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Abstract

This manuscript describes the current version of GenASiS and reports recent progress in

its development. GenASiS is a new computational astrophysics code built for large-scale

and multi-dimensional computer simulations of astrophysical phenomena, with primary

emphasis on the simulations of neutron star mergers and core-collapse supernovae. Neutron

star mergers are of high interest to the astrophysics community because they should be the

prodigious source of gravitation waves and the most promising candidates for gravitational

wave detection. Neutron star mergers are also thought to be associated with the production

of short-duration, hard-spectral gamma-ray bursts, though the mechanism is not well

understood. In contrast, core-collapse supernovae with massive progenitors are associated

with long-duration, soft-spectral gamma-ray bursts, with the ‘collapsar’ hypothesis as

the favored mechanism. Of equal interest is the mechanism of core-collapse supernovae

themselves, which has been in the forefront of many research efforts for the better half

of a century but remains a partially-solved mystery. In addition supernovae, and possibly

neutron star mergers, are thought to be sites for the r-process nucleosynthesis responsible

for producing many of the heavy elements. Until we have a proper understanding of these

events, we will have only a limited understanding of the origin of the elements. These

questions provide some of the scientific motivations and guidelines for the development

of GenASiS. In this document the equations and numerical scheme for Newtonian and

relativistic magnetohydrodynamics are presented. A new FFT-based parallel solver for

Poisson’s equation in GenASiS are described. Adaptive mesh refinement in GenASiS,

and a novel way to solve Poisson’s equation on a mesh with refinement based on a
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multigrid algorithm, are also presented. Following these descriptions, results of simulations

of neutron star mergers with GenASiS such as their evolution and the gravitational

wave signals and spectra that they generate are shown. In the context of core-collapse

supernovae, we explore the capacity of the stationary shock instability to generate magnetic

fields starting from a weak, stationary, and radial magnetic field in an initially spherically

symmetric fluid configuration that models the stalled shock in the post-bounce supernova

environment. Our results show that the magnetic energy can be amplified by almost

4 orders of magnitude. The amplification mechanisms for the magnetic fields are then

explained.
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Chapter 1

Introduction

We are developing a new computational astrophysics code, GenASiS, that is suitable for

large-scale computer simulations of astrophysical phenomena, with primary emphasis on

the simulations of neutron star mergers and core-collapse supernovae. This manuscript

describes the current implementation of GenASiS and reports recent progress in the

development. In this chapter, we provide the scientific motivations guiding GenASiS’

development, introduce the computational challenges we are trying to meet, and give an

outline of the rest of the document.

1.1 Scientific Background

Neutron star mergers and core-collapse supernovae are of fundamental interest on their own

merits, and because they are likely sources of gamma-ray bursts, strong gravitational-wave

emission, and nucleosynthesis of many heavy elements. In the rest of this section, these

observables and phenomena are discussed more fully, providing the scientific motivations

for studies involving computer simulations of neutron star mergers and core-collapse

supernovae.
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1.1.1 Observables

1.1.1.1 Gamma-ray Burst

In the late 1960s, United States Vela military satellites began registering gamma radiation

pulses, radiations that are commonly emitted by nuclear weapons. The Vela satellites

were originally built to monitor compliance with the nuclear test ban treaty. The detected

radiation signatures, however, were unlike any other known nuclear weapon signatures.

Several more bursts were observed by additional Vela satellites before Klebesadel et al.

(1973) ruled out the terrestrial and solar origin of these bursts by estimating the sky

positions of sixteen bursts using data from multiple satellites. This was quickly confirmed

by data from the Soviet Konus satellites (Mazets et al., 1982).

This initial discovery of Gamma-ray bursts (GRB), followed by even more events of

GRB recorded by various satellites, spurred interests in their nature and origins. However,

it was not until about two decades later, with the launch of the Compton Gamma-

Ray Observatory (CGRO) and its all-sky survey instrument Burst and Transient Source

Experiment (BATSE), that more definitive origins of GRB were obtained. Over 2700

bursts that were recorded by BATSE showed essentially isotropic distribution in the sky,

suggesting a cosmological origin (Meegan et al., 1992). These were confirmed and com-

plemented by data from Oriented Scintillation Spectrometer Experiment (OSSE), Compton

Telescope (CompTel), and Energetic Gamma Ray Experiment Telescope (EGRET) on

the CGRO (Fishman and Meegan, 1995). The launch of CGRO marked a new era of

GRB observations, obtaining spectral data (Band et al., 1993), light curves (Fishman and

Meegan, 1995), energy ranges up to GeV (Schneid et al., 1995; Hurley et al., 1994), and

durations of GRB (Kouveliotou et al., 1993).

GRB are the most luminous electromagnetic events in the entire universe. Yet for

decades after the initial discovery of GRB, astronomers unsuccessfully searched for the

optical counterparts of GRB to pinpoint the sources of the bursts (Fishman and Meegan,

1995). A debate on whether the GRB were of galactic or extragalactic origin arose (Hurley,

1992; Paczynski, 1995; Lamb, 1995). These issues were finally resolved with the successes
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of the Beppo-SAX satellite in obtaining the X-ray images of the fading afterglow of GRB

in 1997 (Costa et al., 1997). The afterglows of GRB had been expected on theoretical

grounds (Paczynski and Rhoads, 1993), but earlier satellites were unable to find these due

to the difficulties in observing at longer wavelengths after the initial bursts. The detection

of X-ray images finally made possible the optical detection because of the arc-minute

position accuracy (Frail and Taylor, 1997; van Paradijs et al., 1997). Measurement of

redshift distances and identification of candidate host galaxies were finally possible with

these new data (Metzger et al., 1997; Frail et al., 1999; Kulkarni et al., 1999). More recent

observations of GRB and their afterglows were reviewed by van Paradijs et al. (2000) and

Weiler et al. (2002).

Kouveliotou et al. (1993) studied the duration distribution of GRB and showed that

there is a well-defined bimodal distribution corresponding to bursts longer or shorter than

about 2 seconds. Therefore GRB are generally classified into short bursts that last only up

to one second or less and long bursts that last anywhere from 2 seconds to several minutes.

Furthermore, Fishman and Meegan (1995) show that there is an anticorrelation between

the spectral hardness and duration, the short ones being harder.

The detection of the afterglows, X-ray, and optical, of long-duration soft-spectrum GRB

shows that they occur in star-forming regions with massive stars (van Paradijs et al., 2000).

The kinetic energies of ejecta and electromagnetic emission associated with these GRB are

comparable to those of core-collapse supernovae (see §1.1.2.1 for description), in particular

for a rare class of supernovae with high-velocity ejecta. This suggests a link between the

two phenomena (Gehrels et al., 2005; Galama et al., 1998; Matheson et al., 2003; Woosley

and Bloom, 2006), and provides indirect evidence for the ‘collapsar’ hypothesis proposed

as the origin of the bursts (MacFadyen and Woosley, 1999). In the collapsar hypothesis,

the end result of the collapse of a massive star with significant rotation is a black hole with

an accretion torus surrounding it. The bursts are the result of shocks in electron/positron

pair plasma moving near the speed of light in an environment nearly devoid of neutrons,

protons, and nuclei. The long time scale corresponds to the infall and fallback time of

material from the stellar collapse (Woosley, 1993; MacFadyen and Woosley, 1999).
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In contrast to the long-soft GRB, a growing body of evidence shows that the short-

duration hard-spectrum GRB occur in regions where no star formation nor massive stars

are present (Hjorth et al., 2005; Gehrels et al., 2005; Fox et al., 2005; Soderberg et al., 2006;

Prochaska et al., 2006). The favored progenitors for these short-hard GRB are mergers of

compact objects such as neutron stars and black holes (Rosswog, 2003; Belczynski et al.,

2006; Lee and Ramirez-Ruiz, 2007). Neutrino-antineutrino pair annihilation (Meszaros

and Rees, 1992; Woosley, 1993) and/or the generation of strong magnetic fields during the

mergers (Mészáros and Rees, 1997; Meszaros, 2002) resulting in an energetic relativistic

plasma are the possible candidates for the central engines of short-hard GRB.

Despite advances in the theories and models for the sources and central engines of

GRB (see for examples Meszaros (2002); Piran (2005); Lee and Ramirez-Ruiz (2007)

for reviews), the detailed mechanisms for both classes of GRB are still not properly

understood. Numerical simulations of core-collapse supernovae and neutron star mergers

(described further in §1.1.2.1 and §1.1.2.2) are needed to test the many assumptions of

these models and give insight of the central engines that power the GRB.

1.1.1.2 Gravitational Waves

The existence of gravitational waves were first predicted by Albert Einstein in 1916 as

a consequence of the general theory of relativity. In this theory, concentration of mass

or energy produces curvature in spacetime, and accelerating masses produce ripples of

spacetime that propagate with the speed of light called gravitational waves.

Although their existence have been indirectly confirmed (Taylor and Weisberg, 1989;

Taylor, 1994), at the time of writing gravitational waves have not been directly detected

because the weak coupling of gravitational waves to matter makes them very difficult to

detect. However, a new generation of gravitational waves detectors such as LIGO (Abbott

et al., 2004b), VIRGO (Acernese et al., 2005), TAMA300 (Takahashi and The TAMA

Collaboration, 2004), and GEO-600 (Willke et al., 2004) are functioning and coming

online. These are ground-based laser interferometers detectors. It is the expectation of
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researchers in this field that these waves will be detected in the near future (Frey, 2007;

Willke, 2007).

One of the most promising gravitational waves sources for these ground-based detectors

is neutron star mergers (Abramovici et al., 1992; Bradaschia, 1990; Luck, 1997). There are

two reasons for this. Mergers of neutron stars involve two extremely dense objects in

rapid orbit, producing strong gravitational waves in the frequency range 10− 10000 Hz,

the range covered by these broadband detectors. The second reason is the event rate of

detectable neutron star mergers, which is predicted to be between 10 to 100 per year for

advanced LIGO by population synthetic calculations (Belczynski et al., 2002; Nakar et al.,

2006; Sadowski et al., 2008). Combined, these two reasons make neutron star mergers the

likeliest candidates for gravitational waves detection.

Extracting gravitational wave signals from noisy background relies on a ‘matched

filtering’ procedure where theoretical waveforms are compared against the interferometer

data sets (Baumgarte et al., 2008). Several detectors have performed this search for signals

of compact remnant mergers in their initial science runs (Tagoshi et al., 2001; Abbott et al.,

2004a, 2005, 2006, 2010). The gravitational wave signals from merging neutron stars

can be derived analytically and are well understood in the regime where the separation is

large compared to the radii of the neutron stars. In this regime, the point-mass formula

is a good approximation. However, at late times in the inspiral, when the separation

becomes comparable to the radii of the stars, hydrodynamical effects become dominant

and the gravitational wave signals deviate significantly from the point-mass approximation.

Therefore detailed modelings from numerical simulations are required to produce the

theoretical waveforms. Knowing the expected waveforms would also provide valuable

information in guiding the design and tuning of future detectors (Harry et al., 2002; Mandel

et al., 2008).

The weakly-interacting nature of gravitational waves makes them very difficult to

detect, but also means that they are a very unique tool to study our universe, complementing

the already long list of electromagnetic signals we employ. Because gravitational waves

interact extremely weakly with matter, once produced they propagate without being
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absorbed or scattered. In cases where other (electromagnetic) signals cannot escape to

carry information from the source, gravitational waves can. For example, combined with

neutrinos, gravitational waves would be the only messengers carrying direct information

from the core in a core-collapse supernova event. Combined studies of theoretical

modelings and detection of these signals may then give us hints of the mechanisms of

these events (for example, see Ott (2009); Yakunin et al. (2010) for recent studies of this

nature). In another example, in a case of a neutron star merger followed by a formation of

a black hole, gravitational waves could be the only messenger providing direct information

from the new remnant. Furthermore, gravitational radiation observations will be from

frequencies below 10 kHz, while observations from electromagnetic signals come from

frequencies above 10 Mhz. This by itself could give new insights and is a very different

way to study the universe.

1.1.2 Phenomena

1.1.2.1 Core-collapse Supernovae

Core-collapse supernovae are the violent death of massive stars and are among the most

powerful explosions in universe, releasing about 1053 erg of energy on timescales of a

few tens of seconds. This rivals the instantaneous power of all the rest of the luminous

visible universe combined. They mark the birth of the most exotic states of matter known:

neutron stars and black holes, while at the same time producing and disseminating most

of the elements heavier than helium in nature, making life as we know it possible. These

events occur about twice per century in a typical galaxy like our own and have been in the

forefront research in the field of astronomy and astrophysics for almost half a century. Yet

how exactly they work is still shrouded in mystery.

Stars burn hydrogen into helium for most of their existence. For stars more massive

than∼ 10 solar masses (M�), temperatures and densities are sufficiently high for burning to

continue through carbon to oxygen, neon, magnesium, silicon, and to iron group elements.

The star ends up in an onion-like configuration, with an iron core surrounded by layers of
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silicon, oxygen, carbon, helium, and hydrogen. Since the iron group elements are the most

tightly bound, burning in the core ceases. At this point, the pressure in the core is dominated

by electron degeneracy pressure (a consequence of the Pauli exclusion principle), which

supports it against the inward pull of gravity. This balance between the gravitational pull

and the electron degeneracy pressure in the core is only marginally stable.

Two processes occur in the core that result in the reduction of the degeneracy pressure

support: electron capture on the free protons and nuclei, and nuclear dissociation under

extreme densities and temperatures. The pressure support in the core is reduced enough that

the core eventually becomes unstable and collapses. As the core collapses, the inner and

outer regions behave differently. The inner core undergoes homologous collapse—velocity

increases linearly with radius—as expected of fluid with relativistic, degenerate electron

pressure. With increasing radius, the density decreases, and so thus the local sound speed.

Thus, there is a radius where the speed of the infalling matter is the same as the local sound

speed, demarcating the inner and outer core. Beyond this radius—the outer core—matter

collapses supersonically.

The inner core collapses until it exceeds nuclear matter density (∼ 1−3×1014 g/cm3).

At this extreme density, the pressure of the inner core increases dramatically as a result

of the repulsive component of the short-range nuclear force. The inner core becomes

incompressible and bounces, and a shock wave forms at the boundary of the inner and

outer core and begins to move out. Ultimately this shock wave will be responsible in the

disruption of the star, producing the observable explosion.

It was once thought that as the shock wave propagated outward, the velocity of the

bounce would grow as it moved into the outer layers of the core; the bounce is therefore the

origin of the supernova’s energy (Colgate and Johnson, 1960; Baron et al., 1985). From all

the realistic models completed to date, we now know that this is not the case, and therein

lies the core-collapse supernova problem.

As the shock propagates out, it has to move through infalling materials in the outer

core, during which nuclear dissociation happens. This costs the shock energy. Additional

energy losses occur when the core electrons capture on the newly available free protons
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because of the nuclei dissociation, which eventually results in electron neutrino burst in a

core-collapse supernova. As a result of these energy losses, the shock stalls.

If this were the end of the story, no supernova would ever explode nor observed. The

shock has to be reenergized so that it may continue to propagate outward and eventually

produces the explosion. The details of how the stalled shock is revived is the central

question in core-collapse supernova theory.

Out of the 1053 erg energy released during the explosion, the visible explosion energy

is only 1%. The rest is released as neutrinos. Because neutrinos dominate the energetics

of a supernova event, it is natural to consider neutrino heating as a mechanism for the

revival of the stalled shock. This delayed neutrino-heating has been proposed as one of the

mechanisms that leads to explosion (for example, see Mezzacappa (2005) and Janka et al.

(2007) for reviews).

Core-collapse supernovae are asymmetric events. Observational evidence that has

accumulated to support this includes spectropolarimetry (Wang et al., 2001a; Leonard et al.,

2006), the large average pulsar velocities (Hansen and Phinney, 1997; Zou et al., 2005;

Chatterjee et al., 2005), and the morphology of highly resolved images of supernova such

as SN 1987A (Arnett et al., 1989; McCray, 1993). On the theoretical side, simulations have

shown that a variety of asymmetric fluid instabilities are present. These instabilities develop

convective overturn and help transport hot gas from neutrino-heating region directly to the

shock, therefore enhancing the neutrino energy deposition to the stalled shock (Janka and

Müller, 1996; Burrows et al., 1995; Herant et al., 1994; Mezzacappa et al., 1998; Buras

et al., 2006). These multidimensional effects therefore may be important for the neutrino-

heating mechanism to revive the stalled shock. Recent simulations have also revealed

the existence of standing accretion shock instability (SASI), which given enough time,

may also grow via the propagation of sound waves (Blondin et al., 2003; Blondin and

Mezzacappa, 2006). All these multidimensional effects may play essential roles in the

mechanisms of core-collapse supernovae.

Stars have both rotation and magnetic fields. It has been suggested that in more massive

progenitors rotation and magnetic fields may play a more significant role (Thompson
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et al., 2005; Fryer and Heger, 2000; Wheeler and Akiyama, 2006), producing jet-like

hypernovae, and perhaps giving birth to ‘magnetars’, a type of neutron star with unusually

large magnetic field. Observational evidence seems to support this (Gaensler et al.,

2005; Figer et al., 2005). Even in normal supernovae there seems to be observational

evidence that rotation and magnetic field play some roles (Burrows et al., 2004). During

collapse magnetic fields may also be amplified enough to have important dynamical effects.

Recently we discovered that an amplification of magnetic fields can happen in SASI (as

discussed in chapter 6), therefore extending the range of progenitors in which magnetic

field may play a significant dynamical role.

Because of the complexity of the supernova mechanisms, a purely analytical investi-

gation is not possible. Instead, supernova modeling requires sophisticated and realistic

numerical simulations. All the input physics required to model core-collapse supernovae

present daunting challenges that are both algorithmic and computational in nature, and tax

state-of-the-art supercomputers for years to come. We describe some of these challenges

in §1.2 and our plans to meet them.

1.1.2.2 Binary Neutron Star Mergers

A neutron star is one possible outcome of stellar evolution, the very compact and dense

object left behind by core-collapse supernova (see also §1.1.2.1) (Fryer, 2004; Woosley and

Janka, 2006). A neutron star, as the name implies, is composed largely of neutrons. It is

supported by degeneracy pressure due to Pauli exclusion principle against further collapse.

As it ages, it cools via neutrino and photon emissions (Prakash et al., 2001).

A typical neutron star has roughly 1−1.5 M� compressed into an object of only about

20 to 10 km in radius (Lattimer and Prakash, 2004). Most neutron stars were initially

discovered as solitary objects known as pulsars (rotating neutron stars emitting periodic

electromagnetic pulses). It was not until 1974 that a neutron star binary was discovered

(two neutron stars in mutual orbit) by Hulse and Taylor (1975), a discovery which led to a
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Nobel Prize. Since then, additional discoveries of binary neutron stars in our galaxy have

followed (Dewey et al., 1985; Anderson et al., 1990; Wolszczan, 1991).

Widely separated neutron stars inspiral, driven primarily by the loss of energy and

momentum due to gravitational wave emissions, as predicted by Einstein’s general theory

of relativity. Close neutron stars binaries, for which the merger timescale is smaller than

a Hubble time, typically start out as a high-mass binary systems, with both stars having

masses greater than 8− 10 M� to ensure that both stars eventually become core-collapse

supernovae. In such systems, the more massive (primary) star evolves faster. After

leaving the main sequence and passing through the giant phase, it becomes a core-collapse

supernova and eventually forms the heavier compact object (i.e. neutron star). The less

massive (secondary) star follows the same evolutionary path, but when it reaches the giant

phase, a common envelope is formed around the primary star. This causes dynamical

friction that shrink the orbital separation dramatically (Belczynski et al., 2008). Sufficient

potential energy is eventually converted into thermal energy to evaporate the envelope.

This step is necessary for binaries to merge within a Hubble timescale, since loss of energy

via emissions of gravitational wave alone is too slow to drive the inspiral. The secondary

object eventually becomes a core-collapse supernova. Depending on the orientation and

magnitude of the supernova kick, either a tight binary is left behind or a complete unbinding

of the system occurs (Taam and Sandquist, 2000; van Den Heuvel, 2006; Voss and Tauris,

2003; Hobbs et al., 2005).

Binary neutron star mergers are interesting to astrophysicists because of their as-

sociation with two observables already mentioned above. They are the candidates

for the short-hard gamma-ray burst (GRB) progenitors, and the prodigious sources of

gravitational waves that are most promising for direct detection. Neutron star merger

simulations are therefore critical to improve our understanding of these aspects of

observable phenomenology. Simulations would shed lights on the viabilities of the

proposed GRB central engines (see §1.1.1.1). Simulations would also produce gravitational

wave templates necessary for the matched filtering procedure—comparation of noisy data
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against theoretical waveforms—in the search for gravitational wave with detectors (see also

§1.1.1.2).

Due to the complex and large-scale nature of the problem, computer simulations of

neutron star mergers have been performed with various simplifications. For many years

the study of neutron star mergers has largely proceeded along two lines: concentration

on improving the microphysics while retaining Newtonian gravity, and concentration on

improving the treatment of gravity while using simplified microphysics.

In the former approach, simulations have been done using Newtonian gravitation with

a ‘realistic’ nuclear equation of state, with the back-reaction from gravitational wave

emission usually taken into account (Ruffert et al., 1996; Ruffert and Janka, 2001a,b;

Rosswog and Davies, 2002; Rosswog and Liebendörfer, 2003). Hydrodynamics codes

based on the ‘piecewise parabolic method’ (Ruffert et al., 1996; Ruffert and Janka, 2001a,b)

or ‘smoothed particle hydrodynamics’ (SPH) (Rosswog and Davies, 2002; Rosswog and

Liebendörfer, 2003) have been used, with the energy loss and composition changes due to

neutrino emission treated using a ‘leakage’ scheme, rather than full neutrino transport.

Recent simulations using SPH have taken magnetic field into account and reported its

amplification due to the Kelvin-Hemholtz instability in the shear layer between the neutron

stars as they begin to merge (Price and Rosswog, 2006). This may have implications for

the production of short-hard GRB.

The latter approach has focused on fully general relativistic simulations with simplified

microphysics (Miller et al., 2004; Shibata and Uryu, 2002; Shibata et al., 2003). A simpler

polytropic equation of state is used in these codes rather than a realistic nuclear equation

of state. In this case energy loss and composition changes due to neutrino emission are

largely ignored. In similar vein, an approximation to the full general relativity called the

‘conformally flat approximation’ (CFA) (Wilson et al., 1996) is used with SPH by Oechslin

et al. (2002) and Faber et al. (2004)

Recently efforts have been made to bridge the chasm between these two approaches.

Simulations with CFA have been done using realistic equation of state (Oechslin and Janka,

2006; Oechslin et al., 2007). Another group have also modeled mergers in full general

11



relativistic simulations using zero-temperature equation of state (Shibata and Taniguchi,

2006; Shibata et al., 2005). The evolution of magnetic fields has also been considered

in general relativistic simulations (Anderson et al., 2008; Liu et al., 2008; Giacomazzo

et al., 2009), with efforts made to study the effects of magnetohydrodynamics instabilities

(Shibata et al., 2006a; Duez et al., 2006) and neutrino energy transport (Setiawan et al.,

2006; Lee et al., 2005).

Beyond these recent studies in the modeling of neutron star mergers, much work still

needs to be done to improve our understanding of the merger events. Questions regarding

the central engines and mechanisms of short-hard gamma-ray bursts remain unanswered,

and the viabilities of the proposed mechanisms need to be explored. More accurate

microphysics for GRB modeling is still needed, including better approximations, if not

the full solution, to the neutrino transport problem. For the purpose of providing templates

for the search of gravitational waves, more simulations need to be done covering larger

parameter space to provide waveform catalogs for detectors data analysis. To answer these

challenges, we intend to complement and advance the recent studies of neutron star mergers

with our own. Toward that goal, we have taken the first steps in building a code suitable to

perform simulations of neutron star mergers with realistic physics input.

1.2 Computational Challenges

From the discussions above, it is clear that both core-collapse supernovae and neutron star

mergers are incredibly complex events where input from all major fields of modern physics

are at play. Therefore, proper modelings of these events require a code with the input

of multi-physics such as hydrodynamics, magnetic fields, self-gravity, relativity, radiation

transport, and nuclear physics. The complexity of building such codes is challenging and

therefore requires modern software engineering practices to be applied thoughtfully. Both

classes of these phenomena however share the same challenges and involve related physics.

Therefore, a versatile simulation system would be able to explore both those problems,

maximizing the return of investment in building such system.
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To meet these challenges, we have started the development of a code named GenASiS.

GenASiS, which stands for General Astrophysical Simulation System, is a multidi-

mensional self-gravitating radiation magnetohydrodynamics code with adaptive mesh

refinement. GenASiS is currently written in Fortran 95 standard, with an upgrade planned

to use the Fortran 2003 standard as it matures. The world “General” in GenASiS

refers to the design modularity, using the object-oriented principle facility in the Fortran

95/2003 standard to allow for function overloading. In object-oriented programming, this

is called polymorphism, which allows us to use a generic name with several different

implementations, thus providing extensibility of the physics. New implementations of

different equations of state, hydrodynamics scheme, coordinate system, gravity theory, and

so forth can therefore be done without having to go back and change the basic parts of

the code. GenASiS is also designed for scalability: the ability to use large number of

processes with distributed-memory parallel computers. These two philosophies guide the

development of and design choices in GenASiS, as will be described in the rest of this

document.

Magnetic fields likely play significant roles in both core-collapse supernovae and

neutron star mergers events. In neutron star mergers, magnetic fields may be amplified

due to various instabilities and act as a central engine for gamma-ray bursts. In the context

of core-collapse supernovae, magnetic fields may be generated, amplified, and affect the

dynamic of the supernova explosion following the collapse. Therefore, instead of a mere

hydrodynamics, both events require magnetohydrodynamics for proper modelings. In

chapter 2 we describe the implementation of magnetohydrodynamics in GenASiS. The

description of the numerical schemes is followed by test problems to verify the correctness

of the implementation. We also show a scalability test for the MHD module, essential for

practical execution of large scale simulations such as the ones described in chapter 5 and 6.

In chapter 3 we describe an implementation to solve Poisson’s equation using FFT for

an isolated system. The method solves the equation globally on mesh blocks distributed

across multiple processes on a parallel computer. Test results to demonstrate the correctness

of the method are presented. We also show the scaling properties of the method. As in

13



MHD, weak scaling for the solver is essential for large-scale simulations. The modularity

in GenaSiS architecture allows us to decouple this solver module from the rest of the

code with ease. We plan to release this solver as a freely-available software library as

our contribution to the community (Budiardja et al., 2010).

In GenASiS, we have chosen to work primarily with multidimensional Cartesian

coordinate systems in grid-based Eulerian formulation (e.g. LeVeque et al. (1998); Laney

(1998)). This choice is motivated by several reasons. Many of the previous simulations

of neutron star mergers have been done in Lagrangian formulation of gas particle using

smoothed particle hydrodynamics (SPH) Monaghan (1992). SPH has been used extensively

because of its adaptivity in resolution, where particles can be easily concentrated and

adjusted with respect to variables such as the density. This seems ideal for problems such as

neutron star mergers where densities are concentrated in the body of the stars surrounded

by largely empty space. We have chosen to use grid-based Eulerian formulation instead

to complement the previous studies and help build the confidence of the community in

the results of previous simulations. It has been shown that grid-based Eulerian method

are more accurate in resolving resolving dynamical instabilities such Kevin-Helmholtz or

Rayleigh-Taylor (Agertz et al., 2007) and capturing shocks (Quilis, 2000) as compared to

SPH.

Our choice of a Cartesian coordinate system avoids complications associated with using

spherical coordinate system—commonly used in core-collapse supernova simulations—

because of coordinate singularities. Coordinate singularities in curvilinear coordinates

enforce very small simulation time steps due to Courant-Friedrichs-Lewy condition (see

2.1.1). Furthermore, it makes more sense in terms of code development to use Cartesian

coordinate systems since there is no spherical symmetry to be exploited in the neutron star

merger problem. Thus neutron star merger simulations do not lend themselves well with

curvilinear coordinate systems. Out choice of a Cartesian coordinate system positions us to

have a code well-suited to explore both core-collapse supernovae and neutron star mergers

problems.
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Both core-collapse supernovae and neutron star mergers problems are inherently

multidimensional, covering large dynamical range in length scales. In the core-collapse

supernovae, density increases of six orders of magnitude occur during the collapse, which

must be properly resolved. In particular, adequate resolution of features of the flow (shocks,

for example) is a necessity. In the context of neutron star mergers, there are different length

scales that must be properly resolved, such as the individual stars, possibly including their

internal dynamics; the orbital length scale; and the location of outer boundaries that must be

large enough so that they do not have dynamical effects on the mergers. To best meet these

needs, we incorporate the development of ‘adaptive mesh refinement’ (AMR) in GenASiS.

The basic idea of AMR is to employ high resolution only where needed. This allows

conservation of memory and computational effort. Although AMR implementation in our

code is still in its infancy, in chapter 4 we describe and show the progress that has been

made with its development. A novel multigrid algorithm to solve Poisson’s equation in

mesh with refinement is also described there, laying groundwork for future simulations

with AMR.

The code description in chapters 2 – 4 is followed by two scientific applications.

In chapter 5 we reports a merger simulation that we have done with GenASiS as a

milestone of the code development. We show the tools we have developed to extract and

analyze gravitational wave signatures from the merger, which are suitable as templates for

gravitational wave detectors.

In chapter 6 we show results from simulations of SASI with magnetic fields in the

context of core-collapse supernovas. We found new results showing that initially modest

magnetic field strength in supernova progenitors may be amplified by up to several orders

of magnitude as the non-linear mode of SASI develops. Our analysis explains the

amplification mechanisms for the generations magnetic fields in this post-bounce supernova

environment (Endeve et al., 2010). These simulations show that GenASiS, although still

very much in development, is already capable of performing scientific simulations.

We finish this manuscript with some concluding remarks and an outlook for future work

in chapter 7.
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Chapter 2

Fluid and Magnetic Field Evolution

In GenASiS, we have implemented a second-order, semi-discrete central-upwind scheme

for the solution of the equations of Newtonian and relativistic magnetohydrodynamics

(MHD) in their conservative forms (Kurganov et al., 2001; Londrillo and Del Zanna, 2000;

Del Zanna and Bucciantini, 2002; Del Zanna et al., 2003). The time-dependent evolution

of the equations is integrated with a time-explicit total variation diminishing (TVD) two-

step Runge-kutta scheme (Shu and Osher, 1988; Kurganov and Tadmor, 2000) to achieve

second-order temporal accuracy.

The conservative form of the fluid part (coupled with magnetic fields) of the MHD

equations implies that the rate of change of conserved quantities in an infitesimal volume

is equal to the flux through the surface of the volume. Accurate computation of fluxes at

every cell surface is therefore a key to this finite-volume method. We use a variation of the

so-called “central schemes” (Einfeldt, 1988; Harten et al., 1983; Kurganov and Tadmor,

2000; Kurganov et al., 2001) to calculate the fluxes with “HLL” formulae given by Del

Zanna and Bucciantini (2002). The central schemes have been noted for their ability to

achieve comparable accuracy to other Goudonov-type Riemann solvers but with much

greater simplicity and less costly computation (Lucas-Serrano et al., 2004). This finite-

volume approach with the HLL central scheme handles shocks and smooth flows of the

hydrodynamic evolution.
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The evolution of the magnetic fields in the multidimensional (relativistic) MHD system

is irreducible to a conservative form since the magnetic field, being a vector, is advanced in

time by the curl operator rather than the divergence operator like the other scalar variables.

This leads to the induction equation for the magnetic field B and the non-evolutionary

divergence-free condition: ∇ ·B = 0. The method of constrained transport (CT) by Evans

and Hawley (1988) preserves the divergence-free condition by evaluating the rate of change

of the magnetic flux on a cell face via the discretization of the curl of the electric field.

By Faraday’s law, the line integral of the electric field around an infinitesimal surface’s

boundary is equal to the rate of change of the flux through the surface and therefore,

applied to a closed surface, the magnetic flux mush vanish, maintaining the divergence-free

condition. Evaluating the electric field on the cell edges accurately is therefore a key to the

CT method. To that end, we also use an HLL central scheme to evaluate the electric field

on the edges that define the cell surface (Del Zanna et al., 2003; Londrillo and Del Zanna,

2004), which has been shown to handle both shocks and smooth flows of the magnetic field

evolution.

In this chapter describe we describe the numerical schemes to solve the equations

of ideal magnetohydrodynamics and our implementations in GenASiS. In §2.1 the HLL

central scheme for Newtonian and relativistic magnetohydrodynamics is described briefly

(further details on the HLL central scheme may be found on the references previously

mentioned). This is followed by the description of equations of state in §2.2. In §2.3 we

describe the parallelization of the algorithms and show performance and scaling with an

increasing number of processes. The numerical tests of our implementations are described

in chapter 2.4. In GenASiS, Newtonian and relativistic MHD are implemented as two

different modules since the hydrodynamics equations could be recovered simply by setting

the magnetic fields to zero. However, for the purpose of the presentation we start by

describing the scheme in Newtonian hydrodynamics and its relativistic counterpart. The

Newtonian and relativistic magnetohydrodynamics then follows as an extension to the

hydrodynamics equations.
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2.1 Numerical Schemes

2.1.1 Newtonian Hydrodynamics

The ideal Newtonian hydrodynamics (HD) equations, without sources, in conservative

Eulerian form are (Landau and Lifshitz, 1959):

∂D
∂ t

+
∂

∂xi

(
ρvi) = 0, (2.1)

∂S j

∂ t
+

∂

∂xi

(
ρv jvi + pδ

i j) = 0, (2.2)

∂E
∂ t

+
∂

∂xi

([
e+ p+

1
2

ρv jv j
]

vi
)

= 0. (2.3)

These are respectively mass conservation, momentum conservation, and energy con-

servation equations. Einstein’s summation convention is used here and throughout,

with Greek indices to indicate four-vectors and Latin indices to denote spatial three-

dimensional vectors. Note that equation 2.2 collapses three equations in three separate

spatial dimensions to one. In equations 2.1 - 2.3, ρ , vi, e, and p represent rest mass

density, fluid velocity, internal energy density, and fluid pressure, respectively. The time-

evolved quantities are the conserved density D, conserved energy density E, and conserved

momentum density S j. In Newtonian HD, these variables are defined as:

D = ρ, (2.4)

S j = ρv j, (2.5)

E = e+
1
2

ρv jv j. (2.6)

The system of equations has to be closed with an equation of state specifying the pressure

in terms of density (with temperature and composition in more sophisticated equations of
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state). For an ideal gas, we use a polytropic equation of state of the form

p = κρ
Γ, (2.7)

where Γ is the adiabatic index and κ is a to-be-determined polytropic constant. This

equation of state implies the relation

e =
p

Γ−1
. (2.8)

The conservation equations 2.1 - 2.3 may be cast as hyperbolic conservation laws of the

form
∂u
∂ t

+∇ · f = 0, (2.9)

where u =
[
D,S j,E

]
is the vector of conserved variables, with corresponding fluxes fi,

defined as

u =
[
D,S j,E

]
, (2.10)

fi =
[

ρvi,ρv jvi + pδ
i j,

(
e+ p+

1
2

ρv jv j
)

vi
]
, (2.11)

where we call the variables
[
ρ,vi,e

]
primitive variables. At each time step during the

evolution, the primitive variables have to be recovered from the conserved ones by inverting

equations 2.4 - 2.6, which is trivial in Newtonian HD.

In integral form over the finite volume V of a particular cell, equation 2.9 becomes

∫ (
∂u
∂ t

+∇ · f
)

dV = 0. (2.12)
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By the divergence theorem
∫

V dV (∇ · f) =
∮

f ·dA on the cell of volume V and surface area

A, this becomes

∂ 〈u〉
∂ t

= − 1
V

∮
f ·dA (2.13)

= − 1
V

[(
Ai f i)

i→−
(
Ai f i)

i←
]
, (2.14)

where 〈u〉 is a cell-centered, volume-average value of the conserved variable and A is the

area of the cell face. Here the left arrow (←) and right arrow (→) indicate evaluation on

the cell inner and outer faces in the i direction, respectively.

The primitive and conserved variables are defined as cell-centered values. During the

flux computation their values are needed on the cell interfaces and must be reconstructed

from the the cell-centered values. We use slope-limited linear interpolation inside our

computational cells to reconstruct the primitive variables on the appropriate cell faces.

The slopes are second-order in spatial accuracy for regions with smooth flows, but may

reduce to first-order accuracy while maintaining non-oscillatory behavior near shocks

and discontinuities. Specifically, we use a one-parameter family of generalized MinMod

limiters (Kurganov and Tadmor, 2000). For an arbitrary variable χ inside a cell whose

center is indexed by (i, j,k), the slope in (for example) the x-direction is defined by

∂ χ

∂x

∣∣∣∣
i jk

= minmod
[

θ

(
χi jk−χi−1 jk

xi− xi−1

)
,

(
χi+1 jk−χi−1 jk

xi+1− xi−1

)
,θ

(
χi+1 jk−χi jk

xi+1− xi

)]
, (2.15)

where the multi-variable minmod function is defined as

minmod(χ1,χ2, . . .) =


min j

(
χ j
)
, if χ j > 0 ∀ j,

max j
(
χ j
)
, if χ j < 0 ∀ j,

0 otherwise,

(2.16)

where θ is the slope weighting parameter and θ ∈ [1,2]. θ = 1 is the most dissipative

and reduces the limiter to the original MinMod (MM) limiter (Roe, 1986), while θ = 2 is

the least dissipative and reduces the limiter to the Monotonized Central (MC) limiter (van

20



Leer, 1977). Note than in our implementation only primitive variables are interpolated to

the cell interfaces. All other quantities needed on the cell interfaces are recomputed from

the reconstructed primitive variables. In our experience, this technique gives better results

and is more robust than interpolating all of the conserved and primitive variables to the cell

interfaces.

Once primitive variables are reconstructed on the cell interfaces as face-centered values,

the raw fluxes and conserved variables on all cell faces are computed using equations 2.4 -

2.6 and 2.11. Each cell face then has raw fluxes and conserved variables to the left and to

the right of the face, respectively, labeled fL, fR, uL, and uR. The flux through a particular

cell face is given by the HLL central scheme formula (Del Zanna and Bucciantini, 2002):

fHLL =
α+fL +α−fR−α+α−

(
uR−uL)

α+ +α−
. (2.17)

The coefficients α± take into account the highest speeds of the Riemann fan at the cell

interface, and can be estimated from the maximum and minimum characteristic speeds

(eigenspeeds) λ± at the two reconstructed states as

α
± = max

{
0,±λ

± (vL) ,±λ
± (vR)} , (2.18)

where, in Newtonian HD

λ
± = v± cs. (2.19)

The sound speed is given by cs =
√

Γp/ρ for a polytropic equation of state. Using only

the two fastest characteristic speeds ensures that shocks are handled correctly, although

contact discontinuities and shear waves, which corresponds to intermediate eigenspeeds,

can be more smeared compared to results from more exact Riemann solvers.
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Having obtained the right-hand side of equation 2.14, we can finally integrate in time.

To achieve a high-accuracy time-stepping integration, we use a second-order TVD Runge-

Kutta scheme (Shu and Osher, 1988):

u(1) = un +∆tL(un) (2.20)

u(n+1) =
1
2

un +
1
2

u(1) +
1
2

∆tL(u(1)) (2.21)

where the operator L(un) denotes the spatial differencing at the right-hand side of equation

2.14. The time interval ∆t must obey the Courant-Friedrichs-Lewy (CFL) condition given

by

vc ·∆t < C∆x, (2.22)

where vc is the maximum of the characteristic speed on the grid

vc = max
{
+λ

+
i ,−λ

−
i
}

, (2.23)

∆x is the cell spacing, and C is the Courant parameter. In most cases, we use C < 0.5.

The CFL condition can be loosely interpreted that information can only propagate a certain

fraction of a cell size in a time step for the integration algorithm to be stable.

2.1.2 Relativistic Hydrodynamics

Relativistic flows and shocks are common in modern simulations of high energy as-

trophysics. Phenomena such as gamma-ray bursts, X-ray bursts, and jets in active

galactic nuclei, are all examples where relativistic flows and shocks play essential roles.

Therefore, the extension of Newtonian hydrodynamics to its relativistic counterpart, and

its implementation in GenASiS, is well motivated. The same overall scheme described in

§2.1.1 can be used to obtain the solution to the equations of relativistic hydrodynamics

(RHD). Here we note some only differences that appear in relativistic case.
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Landau and Lifshitz (1959) gives the equations of RHD in covariant form:

∂α (ρuα) = 0, (2.24)

∂α

(
wuαuβ + pgαβ

)
= 0. (2.25)

We have chosen to use geometrized unit throughout in which G = c = 1, where G is

Newton’s gravitational constant and c is the speed of light. For simplicity, Minkowskian

flat space is assumed with gαβ = diag{−1,1,1,1}, with the coordinates xα = (t,x j). The

variables have the same meaning as before, with the addition of the relativistic enthalpy

w = ρ + e + p and the four-velocity uα = (γ,γv j), where γ = (1− v2)−1/2 is the Lorentz

factor. An equation of state is necessary to close the system of equations.

The RHD equations 2.24 and 2.25 may be cast into hyperbolic conservation laws in the

form of equation 2.9 by defining the vector of conserved variables with their corresponding

fluxes as:

u =
[
D,S j,E

]
, (2.26)

fi =
[
ργvi,wγ

2viv j + pδ
i j,wγ

2vi− γρvi] , (2.27)

where the conserved variables are

D = ργ, (2.28)

S j = wγ
2v j, (2.29)

E = wγ
2− p−ργ, (2.30)

with ρ , v j, and e as the primitive variables.

The primitive variables must be recovered from the conserved variables at lease once

in per time step. This is trivial in the case of Newtonian HD, but not in the RHD case,

where the equations for the conserved variables form a non-linear system of equations to

be inverted for the primitive variables. Another complicating factor is that in the general
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case the equation of state may not have an analytic form such as the ideal gas (polytropic)

equation of state, but may be given in tabular form instead (see §2.2). Therefore, to invert

the conserved variables to the primitives we employ an iteration procedure that does not

depend on the form of the equation of state as follows.

Equations 2.28 - 2.30 may be combined to form a non-linear equation

(E + p′+D)(1− γ
−2)−SiSi = 0, (2.31)

where E, D, and Si are known. Here p′ as the initial guess for the pressure. It is set to the

value of p from the previous known state. Equation 2.31 is solved using a numerical non-

linear root-finder for γ . We use the Newton-Raphson method rtsafe found in Numerical

Recipes by Press et al. (1986). Given γ , we can solve for the other primitive variable ρ , e,

and vi, in that order. A new pressure p(ρ,e) is then computed using the equation of state

and compared to p′. If the relative error ε = (p′− p)/p is above a certain threshold, set

p′ = p and reiterate, otherwise, quit. We set this threshold to 1×10−7.

For relativistic flows, the eigenspeeds required for the flux computation are given

according to the relativistic rule for velocity vector addition, after splitting the velocity to

its components that are parallel and perpendicular to the direction of the spatial dimension

(Del Zanna and Bucciantini, 2002):

λ
± =

v‖(1− c2
s )± cs

√
(1− v2)(1− v2

‖− v2
⊥c2

s )

1− v2c2
s

. (2.32)

This concludes the modifications needed for the scheme described in §2.1.1 to solve the

RHD equations.

2.1.3 Newtonian Magnetohydrodynamics

Equations 2.1 - 2.3 may be extended to include the magnetic fields in order to describe

the evolution of the magnetized fluid. The equations of Newtonian ideal (zero resistivity)

MHD, without sources, are Landau et al. (1984):
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∂D
∂ t

+
∂

∂xi

(
ρvi) = 0, (2.33)

∂S j

∂ t
+

∂

∂xi

(
ρv jvi + pδ

i j−B jBi) = 0, (2.34)

∂E
∂ t

+
∂

∂xi

([
e+ p+

1
2

ρv jv j +
1
2

B jB j
]

vi−Bi(B ·v)
)

= 0, (2.35)

∂B
∂ t

+∇×E = 0, (2.36)

∇ ·B = 0. (2.37)

Equations 2.33 - 2.35 are the conservation equations for mass, momentum, and energy

for the magnetized fluid. Equation 2.36 is the induction equation governing the evolution

of the magnetic field B, where the electric field is given by E = −v×B. The magnetic

divergence-free equation 2.37 has to be satisfied at all times by the numerical method.

The conservation equations for the fluid part of the MHD equations retain the form of

equation 2.9 if we define the conserved variables and corresponding fluxes as

u =
[
D,S j,E

]
, (2.38)

fi =
[

ρvi,ρv jvi + pδ
i j−B jBi,

(
e+ p+

1
2

ρv jv j +
1
2

B jB j
)

vi−Bi(B ·v)
]
, (2.39)

where the conserved variables are defined as

D = ρ, (2.40)

S j = ρv j, (2.41)

E = e+
1
2
,
(
ρv jv j +B jB j) , (2.42)

with ρ , v j, and e as the primitive variables.
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The magnetic part of the MHD equations requires a different treatment. Applying

Stokes’ theorem on the magnetic induction equation 2.36 gives us the integral form

∂B
∂ t

=− 1
A

∮
c
E ·dl, (2.43)

where l is the cell-edge boundary for the cell surface of area A. Summed over all faces of a

cell, two line integrals in opposite directions cancel on every cell edge, therefore satisfying

the divergence-free constraint of equation 2.37. In the method of constrained transport, we

evaluate the rate of change of magnetic flux on a cell face with the discrete correspondence

of equation 2.43 as
∂ 〈Bi〉

∂ t
=− 1

Ai
∑
j 6=i

[
(lkEk) j�− (lkEk)� j

]
. (2.44)

Here 〈Bi〉 is the face-centered surface average located at cell interfaces in the i direction.

This is the fundamental property of the CT method, which relies on the definition of

staggered field components 〈Bi〉, 〈B j〉 and 〈B j〉 as primary data located on the cell interfaces

in the direction i, j, k respectively. The left and right arrows with tails, (� j) and ( j�),

denote evaluation along the inner and outer edge of the face in j direction, respectively.

The index j runs over two spatial dimension orthogonal to i, while k indicates the direction

orthogonal to both i and j. This discretization satisfies the divergence-free condition by

construction.

The electric field component Ek on the edge along the k direction is computed using the

HLL formula (Del Zanna et al., 2003)

EHLL
k =

α
+
i α

+
j ELL

k +α
+
i α
−
j ELR

k +α
−
i α

+
j ERL

k +α
−
i α
−
j ERR

k(
α

+
i +α

−
i
)(

α
+
j +α

−
j

)
+

α
+
i α
−
i

α
+
i +α

−
i

(
BR

j −BL
j
)
−

α
+
j α
−
j

α
+
j +α

−
j

(
BR

i −BL
i
)
, (2.45)

where i, j, k are orthogonal to each other and i 6= j 6= k. The values for ELL
k , ELR

k , ERL
k , and

ERR
k are computed using the formula for the electric field E =−v×B, with the values for
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v and B defined in the four cells surrounding the edge, as indicated by the two subscripts

to denote the left (L) or right (R) face with respect to the edge in the first and second

direction. The values for v and B have to be reconstructed from their cell-centered and face-

centered values to the edge using linear interpolation with a slope limiter. Note that for cell-

centered values the reconstruction to an edge takes two independent linear interpolations in

two different directions. The eigenspeeds (α±i ) are also computed from the characteristic

speeds of the reconstructed states on the edge, which in the MHD system is given by

λ
±
i = vi±

1
2

c2
s + c2

a +

√
(c2

s + c2
a)2−

4c2
s B2

i
ρ

1/2

, (2.46)

where ca is the speed of Alfvén wave, defined as:

ca =

√
BiBi

ρ
. (2.47)

The calculation of the fluid fluxes requires all components of the magnetic field on the

cell interfaces. To accomplish this, we define the cell-center value of the magnetic field

components as

(Bi)↔ =
1
2

[(Bi)←i +(Bi)i→] , (2.48)

(B j)↔ =
1
2
[
(B j)← j +(B j) j→

]
, (2.49)

(Bk)↔ =
1
2

[(Bk)←k +(Bk)k→] , (2.50)

where Bi, B j and B j are the primary data defined on the cell inner and outer faces in the

i, j, and k direction. The slope-limited gradients are evaluated for each component of

the magnetic fields in each direction using equation 2.15. The rest of the magnetic field

components on the cell faces may then be reconstructed using the slopes.
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2.1.4 Relativistic Magnetohydrodynamics

The covariant equations for relativistic MHD may be written as (Del Zanna et al., 2003)

∂α(ρuα) = 0, (2.51)

∂α

[
(w+ |b|2)uαuβ −bαbβ +(p+ |b|2/2)gαβ

]
= 0, (2.52)

∂α(uαbβ −uβ bα) = 0, (2.53)

where bα is a magnetic induction four-vector with components

bα = [γ(v ·B),B/γ + γ(v ·B)v] , (2.54)

and bα = [0,B] in the fluid comoving local rest frame, so that

|b|2 ≡ bαbα =
B2

γ2 +(v ·B)2. (2.55)

Other variables retain the same definitions as in §2.1.2 and §2.1.3. Equation 2.51 gives

mass conservation and equation 2.52 gives momentum-energy conservation. The spatial

part of equation 2.53 gives the classical induction equation 2.36, while the temporal

component becomes the divergence-free constraint of 2.37. The Newtonian MHD

equations can be obtained by letting v2 � 1, and RHD equations can be recovered by

setting bα = 0.

The scheme previously described in §2.1.3 may be implemented by defining the

conserved variables and their corresponding fluxes as

u =
[
D,S j,E

]
, (2.56)

fi =
[
ρui,wtotuiu j−bib j + ptotδ

i j,wtotu0ui−ρui−b0bi] , (2.57)

28



where wtot = w+ |b|2 and ptot = p+ |b|2/2. The conserved variables are defined as

D = ργ, (2.58)

S j = wtotu0u j−b0b j, (2.59)

E = wtotu0u0− ptot−b0b0−ργ, (2.60)

with ρ , v j, and e as the primitive variables.

Like the case of RHD, the recovery of primitive variables from the conserved ones must

be carried out using some iterative root-finding method because of the non-linearity of the

equations. Despite the fact that the magnetic field B is both a primitive and conserved

variable, the inversion is even more difficult in the relativistic MHD case. The inversion

scheme needs to be agnostic to the form of the equation of state in general. In the code,

we have implemented a slightly modified version of the 1DW scheme found in Noble

et al. (2006) to allow for the convergence of the pressure as a function of other primitive

variables.

To obtain the primitive variables, first let us define

Qµ = γ(w+b2)uµ − (p′+b2/2)nµ +(nνbν)bµ , (2.61)

where we set p′ to the value of p from the last step initially, and nν = [−1,0,0,0]. A

non-linear equation for W = wγ2 may then be constructed as

Qµnµ =−B

2
(1+ v2)+

(
QµBµ

)2

2W 2 −W + p′, (2.62)

where we have used the magnetic field four-vector B = [0,B]. v2 in equation 2.62 may be

eliminated using the equation

v2 =
Q̃2W 2 +

(
QµBµ

)2 (
B2 +2W

)
(B2 +W )2W 2

, (2.63)
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where Q̃2 = QµQµ +
(
Qµnµ

)2. This yields an equation that is a function of W only,

and may be solved using a numerical root-finding method. After v is recovered through

equation 2.63, the rest of the primitive variables can be obtained from equations 2.58 -

2.60. A new value for pressure p(ρ,e) may then be computed using the newly-recovered

internal energy e. We check for convergence by comparing the relative error ε = (p′− p)/p

to a preset threshold of 1×10−7. If ε is above this threshold, we set p′ = p and re-iterate.

The complete structure of the characteristic wave speeds in a relativistic MHD system

was first investigated by Anile and Pennisi (1987), and reviewed later in Anile (1989). In

the HLL scheme however, complete knowledge of this structure is not required since we

use only the fastest waves to compute the fluid flux in equation 2.17 and electric field in

equation 2.45. Here only the necessary expressions for the eigenspeeds are reported, as

shown in Del Zanna et al. (2003). These are the four magneto-sonic wave speeds given by

the nonlinear quartic equation

(
1− ε

2)(u0
λ −ui)4

+
(
1−λ

2)[c2
s

(
b̃0

λ − b̃i
)2
− ε

2 (u0
λ −ui)2

]
= 0, (2.64)

where

b̃α = bα/
√

wtot, (2.65)

|b̃|2 = b̃α b̃α = |b|2/wtot, (2.66)

ε
2 = c2

s + |b̃|2− c2
s |b̃|2. (2.67)

The nonlinear equation 2.64 may be solved using numerical methods suitable for finding

roots of polynomials. In GenASiS, we have used the Laguerre’s method with the routine

zroots from Numerical Recipes (Press et al., 1986).
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2.2 Equation of State

An equation of state describes the relationships between the thermodynamic variables of a

system. Typically it describes the dependence of pressure and internal energy on density,

temperature, and composition. Therefore, an equation of state closes the equations of

(relativistic) MHD systems. We have implemented several equation of state in GenASiS:

the polytropic equation of state for an ideal gas, the Lattimer-Swesty (LS) equation of state

(Lattimer and Swesty, 1991), and the equation of state by Shen et al. (1998) for dense

nuclear matter.

A polytrope is a simple equation of state that is often used in simplified modeling of

astrophysical structure where the microphysics is not the primary interest. It has been used

in the modelings of objects such as neutron stars and the pre-collapse progenitor and proto-

neutron star in the context of core-collapse supernovae. The assumption of this equation

of state implies that pressure is independent of temperature, depending only on density and

composition. In its most familiar form, the polytropic equation of state is:

p = κρ
Γ, (2.68)

e =
p

(Γ−1)
, (2.69)

where the adiabatic index Γ is a specified parameter and the polytropic constant κ is

updated in response to changes in the internal energy e. A completely ionized, fully

convective star, or non-relativistic and completely degenerate gas of fermions, may be

modeled with Γ = 5/3, while one can use Γ = 4/3 for a degenerate gas of ultrarelativistic

fermions. Neutron star environment with nuclear matter density are often model with Γ≥ 2.

We have also implemented the Lattimer-Swesty (LS) equation of state in GenASiS

(Lattimer and Swesty, 1991). LS is an equation of state for dense nuclear matter. This

equation of state was formulated for the study of supernovae and neutron stars under the

conditions which we are interested in. The matter is taken to consist of free protons, free

neutrons, leptons, photons, alpha particles, and nuclei of a single representative heavy
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species. The leptons and photons are treated as ideal Fermi and Bose gases respectively,

since they interact weakly. This equation of state is based on the compressible liquid

drop model in a non-relativistic framework. It is designed to be fast enough for use

in hydrodynamics codes. It also allows consistent alteration of the major nuclear force

parameters. This equation of state has been used in many astrophysics simulations and

is a ‘standard’ realistic nuclear equation of state for supernova and neutron star merger

simulations.

Another dense nuclear matter equation of state was developed by Shen et al. (1998).

This equation of state was developed using relativistic mean field theory for high density

nuclear matter. It is also designed for use in numerical simulations under the conditions

encountered in neutron stars and neutron star merger. This equation of state incorporates

special relativistic effects in the nuclear structure that play a role in describing nuclear

saturation. It is therefore important to study neutron star mergers and core-collapse

supernovae using this relativistic equation of state. This equation of state has also been

incorporated in GenASiS for usage in future simulations.

2.3 Parallel Implementation

A common architecture in modern supercomputing is distributed-memory parallel comput-

ers in a computer cluster. Machines of this type allow large problems to be decomposed—

for example, into multiple spatial subdomains—and distributed across different ‘processes’

to be solved in parallel. Each ‘process’ contains its own copy of the program, can only

access memory locations allocated either statically or dynamically by the program, and

can communicate with other processes only through a specific protocol, with the Message

Passing Interface (MPI) (Gropp and Lusk, 2010; MPI-Forum, 2010; Gropp et al., 1999)

presently being the most widely used.

In many physical simulations the problem size is large enough that the computational

domain is conveniently spatially decomposed into multiple subdomains, each assigned

to a different process. Communications (via MPI) are then required to synchronize the
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Figure 2.1: An illustrative brick decomposition in three dimensions for a computational
domain assigned to twenty-seven processes. Only eleven bricks are shown to simplify the
illustration. The bricks are labeled with the rank of the process that ‘owns’ them. (Process
rank numbering here and in the following two figures begins with 1, rather than 0 as in MPI
and internally in the code.)

time integration and solve the problem in parallel on the whole computational domain.

In the general case the extent of the domain—and/or the number of mesh points—need

not be the same in all dimensions. In the case of magnetohydrodynamics, in which only

nearest-neighbor information is required (for example, gradient and flux computation),

decompositions yielding subdomains with low surface-to-volume ratio are favorable to

minimize communications between processes. To that end, GenASiS uses a simple

‘brick’ decomposition: in three dimensions, the computational domain is divided in each

dimension by nb = 3
√np, the cube root of the number of processes np. Figure 2.1 illutrates

the brick decomposition.
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To facilitate the computations that require nearest-neighbor cell values crossing process

boundaries, each process keeps ‘ghost’ cells in addition to the ‘proper’ cells (the cells that

make up the subdomain owned by the process). The value of ghost cells of a process need to

be updated to reflect the values of the proper cells owned by other processes corresponding

to that ghost cells at least once after every Runge-Kutta step. This is done by exchanges

of values between processes. The exchanges are point-to-point communications, with each

process sending to and receiving from other (known) processes that are neighbors to that

process. Figure 2.2 shows this construction. For illustrative purpose, the figure is a two-

dimensional slice of figure 2.1, showing only an xy-plane. Proper cells owned by process

1, 3, 5, 7, 9 are shown as solid lines. The colors denote the process number. The ghost cells

for each process are indicated by dotted lines. In this example (in the two-dimensional

slice), the ghost cells of process 1 correspond to the proper cells owned by process 2, its

right neighbor (not shown), and process 4, its top neighbor (not shown). Similarly, the

ghost cells of process 4 correspond to the proper cells of process 2 (bottom neighbor), 4

(left neighbor), 6 (right neighbor), and 8 (top neighbor). Conversely, some of the ghost

cells of process 2, 4, 6, and 8 correspond to the proper cell of process 5. Thus in this case,

process 5 needs to have communication exchanges with process 2, 4, 6, and 8 to send the

values of its proper cells that make up the ghost cells of those processes, and to receive

values of the proper cells of those processes that make up its ghost cells.

Notice that only a subset of proper cells needs to be exchanged between processes. For

our second-order spatial scheme, this is one layer of cells that border the process boundary.

(Higher-order spatial scheme may need more layers of cells). Since communications take

times away from computation, in order to achieve good performance and scalability as the

number of processes grows, communications are overlapped with computations. This is

done by collecting the cells that need to be communicated into a set called ‘sent cells’, with

their interfaces to ‘sent faces’. Evaluation of fluxes involving the sent cells and sent faces

are done first (note that the computation of fluxes and slopes on the domain can be done in

arbitrary order). Once the changes to the sent cells are applied, they are communicated to
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Figure 2.2: A slice of brick decomposition in the two-dimensional xy-plane. Process 1, 3,
5, 7, 9, with their proper cells, are shown as solid lines. The ghost cells for these processes
are shown as dotted lines.

other processes with non-blocking communications. The fluxes for the rest of the cells are

evaluated while waiting for the communication to finish.

This technique of overlapping communication with computation has allowed our code

to maintain weak scaling, i.e. maintaining the time needed to solve the equations of MHD

as we increase the number of processes for a fixed problem size (e.g. the size of subdomain)

per process. Figure 2.3 shows the weak-scaling plot of the MHD implementation. Good

weak-scalability is essential to the practical execution of large-scale simulations such as

the ones we have in chapter 6.

2.4 Numerical Test Problems

In this section we present numerical test problems that have been done in GenASiS

for the MHD and relativistic MHD implementations. Many of these test problems

are well-known in the literature. Test problems serve as methods to validate the

correctness of implementation and scheme. They also serve as a way to check strengths
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Figure 2.3: Weak scaling of magnetohydrodynamics implementation in GenASiS.
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and weaknesses of different schemes to solve the same physics. Since in the future

GenASiS may implement different schemes (e.g. new coordinate systems, different

magnetohydrodynamics formulations, different Poisson’s equation solvers), these test

problems will also serve as benchmarks with which we measure the maturity of the

code with regards to specific scheme’s implementation. In its current state, these test

problems are exercised daily to guard against unintentional introduction of new bugs as

code development proceeds Yet another important purpose of the test problems is to test the

ability of GenASiS to handle different physical situations and regimes that it may encounter

in real physical simulation in a controlled setting. The successes of the code in this area

gives us confidence in the correctness of results when we use it to do physical simulations

to explore scientific problems.

Some of the test problems here have analytical solution that we can compare against.

Others have semi-analytical or numerical solutions computed by a different scheme (for

example, a more computationally-costly but more ‘exact’ scheme), or different codes that

are available in the literature. Some test problems have periodicity in which we can

compare the numerical solution after being evolved for some period to its initial condition

(i.e. the known solution). For each of the test problems, we benchmark GenASiS’

numerical result by quantifying differences of some variable χ on the mesh as the L1 norm

relative error:

L1 (χ) =
∑
i, j,k

∣∣χ (xi,y j,zk
)
−χ0

(
xi,y j,zk

)∣∣
∑
i, j,k

∣∣χ0
(
xi,y j,zk

)∣∣ , (2.70)

where χ0 is the ‘known’ value being used as the standard for comparison. Here the

summation is done over all cells on the computational domain. Thus the L1 norm gives a

single number as a quantitative measure of error for a certain mesh resolution. Plotting this

error measurement as function of mesh resolution then gives us the order of convergence

of our numerical solution. In general, because we have second-order scheme in space
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for MHD and second-order Runge-Kutta integration in time evolution, we expect second-

order convergence for smooth flows. For flows with shocks, this reduces to first-order

convergence.

2.4.1 Newtonian Riemann Shock Tube Problem

2.4.1.1 Analytical Solution

The 1D Riemann shock tube problem is a well-known staple test problem for any shock-

capturing hydrodynamics code. It was first introduced by Sod (1978) to benchmark

hydrodynamics algorithms. The problem is initialized by setting up two discontinuous

states: high density and high pressure gas on the left, and low density with low pressure

gas on the right, separated by a membrane. At time t0 the membrane is removed, allowing

the two states of the gas to interact, and the evolution of the gas interaction is followed.

Nonlinear waves are generated at the discontinuities, with a shock wave propagating to the

right and a rarefaction wave to the left.

The anatomy of the shock tube profile is illustrated in figure 2.4. The density, pressure,

and velocity profiles of the gas at t = 0.25 are plotted. Five distinct regions can be identified,

as indicated in figure 2.4 by thin dotted vertical lines to delineate the regions:

• region 1: the undisturbed state initially to the left of the membrane

• region 2: the rarefaction region

• region 3: the pre-shock region to the left of the contact discontinuity

• region 4: the post-shock region to the right of the contact discontinuity

• region 5: the undisturbed state initially to the right of the membrane

There is a constant pressure and velocity across the contact discontinuity in region 3 and

4. This is accompanied by a discontinuity in the specific entropy and internal energy of the

fluid in region 4 just behind the shock because of heating through the shock.
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Figure 2.4: Analytical solution for shock tube problem at t = 2.5 with polytropic equation
of state Γ = 1.4. The figure illustrates the various regions and key positions that exist
in the problem. Density, pressure, and velocity profiles are shown. The vertical dotted
lines delineate various regions labeled by numbers. Various key positions are identified as
x0 . . .x4, with their particular values as: x0 = 0.5, x1 = 0.2, x2 = 0.48, x3 = 0.73, x4 = 0.94.
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Analytical solutions can be derived to find the values of density, pressure, and velocity

in each region. The following key positions, as indicated in figure 2.4, help describes the

complete solution to the shock tube problem:

• x0: the initial position of the membrane

• x1: the position of the rarefaction head moving to the left

• x2: the position of the rarefaction tail

• x3: contact discontinuity that separates left fluid from the right fluid

• x4: the shock front moving to the right of the membrane

The initial conditions of the shock tube problem gives us the values of pressure, density,

and velocity in region 1 and 5, denoted as [p1,ρ1,v1] and [p5,ρ5,v5], respectively. Here

number subscripts are used to indicate the region where the quantity belongs.

The states on either side of the shock can be described by the Rankine-Hugoniot jump

conditions (Courant and Friedrichs, 1977):

ρ4 (v4− vS) = ρ5 (v5− vS) , (2.71)

ρ4 (v4− vS)
2 + p4 = ρ5 (v5− vS)

2 + p5, (2.72)

ρ

(
1
2

v2
4 + ε

)
(v4− vS)+ p4v4 = ρ

(
1
2

v2
5 + ε

)
(v5− vS)+ p5v5, (2.73)

where vs is the velocity of the shock moving to the right. Let us define:

Ω =
Γ−1
Γ+1

,

β =
Γ−1

2Γ
,

where Γ is the adiabatic index of the polytropic equation of state of the form p = κρΓ,

with sound speed is given by cs =
√

Γp/ρ . Using the shock jump conditions and the initial
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state of the fluid to the right of the membrane, we find the equation describing the possible

post-shock values for P and v:

v = v5 +(p− p5)

√
1−Ω

ρ5 (p+Ωp5)
. (2.74)

This is a curve on the p-v plane. The possible values of p and v on the rarefaction wave

moving to the left are described by the equation

v = v1 +
(

p1
β − pβ

)√(1−Ω2) p1
1/Γ

Ω2ρ1
. (2.75)

This is also a curve on the p-v plane. The intersection of these two curves then gives us the

value of pressure and velocity in region 3 and 4. By solving the following equation for p,

we get the value of p3 (and therefore also p4):

v1 +
(

p1
β − pβ

)√(1−Ω2) p1
1/Γ

Ω2ρ1
= v5 +(p− p5)

√
1−Ω

ρ5 (p+Ωp5)
. (2.76)

We can then get the value of v3 and v4 from equation 2.74 by substituting p = p3.

The jump conditions also imply the following relationship

ρ4 = ρ5
p4 +Ωp5

p5 +Ωp4
. (2.77)

We use this to find the density in in region 4 (ρ4). The density in region 3 (ρ3) can be

calculated from polytropic relation:

ρ3 =
(

p3

p1

) 1
Γ

ρ1. (2.78)
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The rarefaction head moves to the left with the speed of sound in the initial region left

to the membrane, thus giving us

x1 = x0− cs1t (2.79)

at any time t > 0. The rarefaction tail location is described by

x2 = x0−
(

cs1−
Γ+1

2
v3

)
t. (2.80)

The position of the contact discontinuity and shock front are described by:

x3 = x0 + v3t, (2.81)

x4 = x0 + vst, (2.82)

where vs is the shock front velocity. The shock front velocity can be derived from the jump

conditions, yielding:

vs =
v3ρ4

ρ5

(
ρ4
ρ5
−1
) . (2.83)

This completes the analytical solution of the shock tube problem.

2.4.1.2 Numerical Solution

At t = 0, we initialize the states with the following conditions:

[v,ρ, p]L = [0.0,1.0,1.0] ,

[v,ρ, p]R = [0.0,0.1,0.125] , (2.84)

where the subscript L and R indicate the left and right states of the discontinuity,

respectively. Initially the discontinuity between the left and right states is placed at x = 0.5.

Figure 2.5 shows numerical and analytical results for this shock tube problem at

t = 0.245. We can see from the figure that the code is able to capture all the features

of the shock tube problems with high accuracy. Also notice that there is no post-shock
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Figure 2.5: Comparison of analytical and numerical result for 1D Sod shock tube problem
at t = 0.245. The solid lines indicate the analytical result. The numerical solution is
computed with 256 cells, using a Courant number C = 0.5 and slope-limiter parameter
θ = 2.0.

oscillation visible in the numerical solution, since it is quickly damped. This is a feature of

the hydrodynamics scheme we employ. The correctness of our implementation is illustrated

by the ability of the code to reproduce the analytical solution numerically.

2.4.2 Newtonian Magnetized Shock Tube Problem

Brio and Wu (1988) introduced the magnetized version of Sod’s shock tube problem. The

hydrodynamical initial condition are identical to Sod’s shock tube problem, with a magnetic
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field added as initial condition:

[ρ, p,vx,Bx,By,Bz]L = [1.0,1.0,0.0,0.75,1.0,0.0] ,

[ρ, p,vx,Bx,By,Bz]R = [0.125,0.1,0.0,0.75,−1.0,0.0] . (2.85)

Figure 2.6 shows our numerical result for this test problem computed with 800

cells. The MHD equations give rise to additional characteristic waves, resulting in more

structures in this problem compared to the non-magnetized shock tube problem. Similarly,

higher resolution is needed to resolve the compound wave structure between the rarefaction

wave and contact discontinuity, which exists due to the non-convexity of the equations. Our

results are consistent with those of Brio and Wu (1988).

2.4.3 Relativistic Riemann Shock Tube Problems

Now we present several relativistic Riemann problems to test the implementation of

relativistic MHD in GenASiS when magnetic fields are absent, therefore reducing the

implementation to the relativistic hydrodynamics scheme (cf. §2.1.2). In the relativistic

regime, the structure of the solution remains the same qualitatively as in the Newtonian

shock tube, except that the rarefaction wave does not yield a linear profile due to the non-

linearity in Lorentz transformation.

2.4.3.1 1D Relativistic Blast Waves

The first two test problems were introduced by Donat (1998), and were also used by Del

Zanna and Bucciantini (2002) to test the central-scheme method. We start with a fairly

easy blast wave exploring only a mildly relativistic regime as the first problem. The second

one is similar, but more severe relativistically with a stronger shock. For both problems,

initially two discontinuous states on the left and right side of the membrane are set as
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Figure 2.6: 1D magnetized shock tube problem at t = 0.1. The numerical solution is
computed with 800 zones, with Courant number C = 0.5. MC and Minmod slope limiters
are used for the top panel and bottom panel, respectively.
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follows on region x = [0,1]:

blast wave 1 :

 [v,ρ, p]L = [0.0,10.0,13.3] ,

[v,ρ, p]R =
[
0.0,1.0,1.0×10−6] , (2.86)

blast wave 2 :

 [v,ρ, p]L = [0.0,1000,1.0] ,

[v,ρ, p]R = [0.0,0.01,1.0] ,
(2.87)

where the discontinuity is located at x = 0.5. As before, the fluid is assumed to be an ideal

gas with adiabatic index Γ = 5/3. As in §2.4.1, the initial discontinuities generate a shock

wave, a rarefaction wave, and a contact discontinuity during the evolution of the fluid.

The exact solution to relativistic shock tube problem was first considered by Martı́ and

Müller (1994). A Fortran program to compute this exact solution may be found in Martı́

and Müller (2003). We use this program as benchmark for our numerical solution for the

two blast wave problems.

Figure 2.7 shows our numerical results for the first blast wave problem with 400 cells.

We show results from using MM and MC slope limiter. The figure indicates that GenASiS

is able to resolve all features of the solution and accurately capture the definition of shocks.

With a Minmod slope limiter the discontinuities are less sharp and more smeared out due

to the diffusive nature of the limiter. Note also the lack of post-shock oscillation, which is

a feature of the scheme we use.

The simulated results of the second blast wave problem are shown on figure 2.8. There

is a very thin shell in the density behind the shock. The exact solution for this density

peak is around 10.5, while ours is around 6.5 with the MC limiter and 5.5 with the

MinMod limiter, as shown in the density plots in the upper panel (for MC limiter) and

lower panel (for MinMod limiter) in figure 2.8, respectively. This provides a measure of

the numerical viscosity of the scheme. Our results of these blast wave problems reproduces

other published results (for example, by Del Zanna and Bucciantini (2002) and Zhang and

MacFadyen (2006)).
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Figure 2.7: Comparison of numerical result and exact solution for blast wave 1 test problem
at t = 0.4. The solid lines indicate the exact solution generated by program in Martı́ and
Müller (2003). The numerical solution is computed with 400 cells, using a Courant number
C = 0.5. MC and Minmod slope limiters are used for the top panel and bottom panel,
respectively.
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Figure 2.8: Comparison of numerical result and exact solution for blast wave 2 test problem
at t = 0.35. The solid lines indicate the exact solution. The numerical solution is computed
with 400 zones, using a Courant number C = 0.5. MC and Minmod slope limiters are used
for the top panel and bottom panel, respectively.
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2.4.3.2 1D Shock Tube with Non-zero Velocity

Next we consider a relativistic shock tube problem with non-zero initial velocity. We set

the initial condition of the left and right states as follows:

[v,ρ, p]L = [0.9,1.0,1.0] ,

[v,ρ, p]R = [0.0,10,1.0] . (2.88)

In this test problem we set the adiabatic index to Γ = 4/3.

The numerical results and exact solutions are shown in figure 2.9. As before, the exact

solution is obtained using the Riemann solver found in Martı́ and Müller (2003). In this

problem a strong reverse shock is observed in the results. The numerical results shows

small but visible post-shock oscillations for the MC limiter, which are quickly damped.

This can be reduced by lowering the Courant number or by increasing the numerical

viscosity. In the Minmod case, this oscillation is less noticeable because the limiter is

more diffusive. The trade-off is less sharp definition of shocks and contact discontinuities.

We also consider a shock tube problem with with non-zero transverse velocity. In

relativistic flow, transverse velocity is coupled to the dynamics along all directions by the

Lorentz factor, which makes this much more difficult to solve correctly compared to the

Newtonian counterpart. This test is relevant in cases where the hydrodynamics involve

strong shear flows, such as in astrophysical jets.

We set up the initial condition as follows:

[vx,vy,ρ, p]L = [0.0,0.0,1.0,1000.0] ,

[vx,vy,ρ, p]R = [0.0,0.99,1.0,0.01] . (2.89)

An adiabatic index Γ = 5/3 is used for this test problem.

Pons et al. (2000) obtained the general solution for the relativistic Riemann problem

with tangential velocity. A Fortran program to compute this exact solution was provided
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Figure 2.9: Comparison of numerical result and exact solution for shock tube problem
with non-zero initial velocity at t = 0.4. The solid lines indicate the exact solution. The
numerical solution is computed with 400 cells, using a Courant number C = 0.5. MC and
Minmod slope limiters are used for the top panel and bottom panel, respectively.
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by Martı́ and Müller (2003). We use this program to compare our numerical solution for

the this problem.

Figure 2.10 shows our numerical results. The exact solutions are also plotted

for comparison. Our results are comparable to other published results by Zhang and

MacFadyen (2006).

2.4.3.3 2D Relativistic Shock Tube

Here we consider the two-dimensional counterparts of the shock tube problems. Mul-

tidimensional relativistic simulations are harder than one-dimensional for the following

reason. In our scheme for multidimensional hydrodynamics, the velocity components are

interpolated spatially to the cell faces. In highly relativistic cases, the interpolation may

cause a non-physical condition where v2 > 1. To avoid this, we have implemented a fall-

back mechanism by returning to the beginning of the failed time step and using first-order

reconstruction when the second-order one produces a non-physical condition. This does not

mean that the code cannot handle the highly-relativistic regime. It simply means that if we

use insufficient resolution, which may cause the non-physical condition, the reconstruction

may be less accurate than second-order for certain time steps.

This 2D test problem starts with a square domain divided into four quadrants of constant

values at the initial time. The four boundaries defines the contact discontinuities and two

1D shocks, which are symmetric with respect to the main diagonal. The initial conditions

for the four quadrants are:

[vx,vy,ρ, p]NE = [0.0,0.0,0.1,0.01] ,

[vx,vy,ρ, p]NW = [0.99,0.0,0.1,1.0] ,

[vx,vy,ρ, p]SW = [0.0,0.0,0.5,1.0] ,

[vx,vy,ρ, p]SE = [0.0,0.99,0.1,1.0] , (2.90)

with adiabatic index Γ = 4/3.
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Figure 2.10: Comparison of numerical result and exact solutions for relativistic shock tube
with transverse velocity at t = 0.4. The solid lines indicate the exact solution. Both the
longitudinal and transverse velocity are plotted. The numerical solutions are computed
with 400 cells, using a Courant number C = 0.5. MC and Minmod slope limiters are used
for the top and bottom half of the panel, respectively.
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Figure 2.11 shows our numerical result as density contour in logarithmic scale. While

Riemann problems can be solved exactly in 1D, this is not the case with 2D problem.

Therefore we may only compare the results to other published numerical results in the

literature. Our results reproduce other results published by Del Zanna and Bucciantini

(2002).

2.4.4 Relativistic Magnetized Shock Tube Problems

Here we present several relativistic magnetized shock tube problems. In all of the test

problems here, we set the adiabatic index Γ = 5/3, and vy = vz = 0.

2.4.4.1 1D Compound Wave

A relativistic extension of §2.4.2 may be constructed and solved with the equations of

relativistic MHD. As before, the initial conditions involve two separate states in the

numerical region, with discontinuities at x = 0.5. For this test, we choose the left and

right states as

[ρ, p,vx,Bx,By,Bz]L = [1.0,1.0,0.0,0.5,1.0,0.0] ,

[ρ, p,vx,Bx,By,Bz]R = [0.125,0.1,0.0,0.5,−1.0,0.0] . (2.91)

Figure 2.12 shows our numerical results. As in §2.4.2, the solution gives rise to a

compound wave. Analytical solution for this test problem is still under investigation. In

fact, the reality of the compound wave structures is still debatable because they are not

predicted by analytic calculation, yet are found in any shock capturing code (Myong and

Roe, 1998; Barmin et al., 1996). However, the results presented here are consistent with

other published results (Balsara, 2001; Del Zanna et al., 2003).
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Figure 2.11: Density contours in logarithmic scale for 2D relativistic shock tube problem at
time t = 0.4 with 400 cells per dimension and a Courant number C = 0.5. MC and Minmod
slope limiters are used for the top and bottom half of the panels, respectively.
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Figure 2.12: 1D relativistic compound wave test problem at t = 0.4. From left to right,
top to bottom panels, the plot for density, pressure, Lorentz factor γ , vx, vy, and By are
shown. The numerical solutions are computed with 1600 cells, using a Courant number
C = 0.5. MC and Minmod slope limiters are used for the top and bottom half of the panels,
respectively.

55



2.4.4.2 1D Magnetized Relativistic Blast Waves

A couple of magnetized versions of relativistic blast waves are presented here. As in

2.4.3.1, the first one is a mildly relativistic blast wave with moderate pressure jump. The

second one has much stronger shocks with about a factor of 104 pressure jump, producing

relativistic flow with Lorentz factors as large as γ ∼= 3.4. The left and right states of the two

blast waves problems are as follows:

blast wave 1 :

 [ρ, p,vx,Bx,By,Bz]L = [1.0,30.0,0.0,5.0,6.0,6.0] ,

[ρ, p,vx,Bx,By,Bz]R = [1.0,1.0,0.0,5.0,0.7,0.7] ,
(2.92)

blast wave 2 :

 [ρ, p,vx,Bx,By,Bz]L = [1.0,1000.0,0.0,10.0,7.0,7.0] ,

[ρ, p,vx,Bx,By,Bz]R = [1.0,0.1,0.0,10.0,0.7,0.7] ,
(2.93)

The results for these blast waves problems are shown in figures 2.13 and 2.14. Both

results were computed using 1600 cells. The first blast wave problem is well resolved in

figure 2.13. We can clearly see all the structures that develop due the various characteristic

waves of the relativistic MHD equations. For example, on the density profile, from left to

right we can identify the fast rarefaction wave moving to the left, the left rarefaction wave

moving to the left, a contact discontinuity, the slow shock moving to the right, and the fast

shock moving to the right. This blast wave produces a maximum Lorentz factor of almost

γ = 1.6. Not all of these structures can be seen in figure 2.14 however. We see the two

left-going rarefaction waves and contact discontinuity, but cannot easily identify the two

right-going shocks. The more relativistic flow with higher Lorentz factor produced by this

problem has the consequence of a more severe length-contraction effect to the structures

moving to the right when viewed in laboratory frame, which is the also the computational

grid. Therefore the same resolution that resolved the first blast wave problem is not high

enough to resolve all the structures in this problem. However, this also demonstrate a

feature of our scheme. Even though some structures are under-resolved, the ones that are

well resolved may achieve the correct value. We see this in the well-defined structures
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of the rarefaction waves and contact discontinuity. Notice also that, as before, post-shock

oscillations are absent. We have compared these results to other published results in the

literature (for example by Balsara (2001) and Del Zanna et al. (2003)) and found them to

be consistent.

2.4.5 Circularly-Polarized Alfvèn Wave

A propagating circularly polarized (CP) Alfvèn wave is a well-known analytical, nonlinear

solution of the multidimensional MHD system. Since the solution is smooth (contains no

shocks), it is often used to measure the convergence of numerical scheme.

We consider a propagating CP Alfvèn wave on the Cartesian plane. Our setup for this

test problem is similar to Tóth (2000) and Londrillo and Del Zanna (2004). The wave

propagates at an angle α relatives to the x-axis. Periodic boundary conditions are used on

the computational domain with inner and outer boundary at:

[
0≤ x≤ 1

cosα
,0≤ y≤ 1

sinα

]
for α > 0,

[0≤ x≤ 1,0≤ y≤ 1] otherwise. (2.94)

Let the coordinate along the direction of propagation be

ξ = xcosα + ysinα, (2.95)

and the coordinate along the transverse direction be

η = ycosα− xsinα, (2.96)

The initial values for the fluid velocity and magnetic field are given as

vη = Bη = Asin(2πξ ) , (2.97)

vz = Bz = Acos(2πξ ) , (2.98)
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Figure 2.13: 1D mildly relativistic magnetized blast wave problem at t = 0.4 with 1600
cells and a Courant number C = 0.5. The panels shows, from left to right, top to bottom,
the density, pressure, Lorentz factor γ , vx, vy, By. On the top half panels we show results
computed with MC slope limiter. The results with Minmod slope limiter are shown on the
bottom half panels.
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Figure 2.14: 1D relativistic magneticed blast wave 2 at t = 0.4 with 1600 cells using a
Courant number C = 0.5. Panels arrangement are as described before in figure 2.13.
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Figure 2.15: Magnetic fields of a circularly-polarized Alfvén wave after one period of
evolution with 64 cells. The black dotted lines shows the initial magnetic field at t = 0;
the symbols show the magnetic field at t = T = 1 after being evolved with MC (left) and
Minmod (right) slope limiter. The wave’s dissipation is due to numerical inaccuracies,
which should decrease as resolution increases. The MC limiter is less dissipative then
Minmod, but we can see its steepening in the direction of wave’s propagation, causing a
slight overshoot after the wave’s optima.

where A measures the wave’s amplitude. The parallel component for the fluid velocity and

magnetic field are set to

vξ = 0, (2.99)

Bξ = 1. (2.100)

We set the amplitude to A = 0.01 with uniform density ρ = 1, pressure p = 0.1, and

adiabatic index Γ = 5/3. These values correspond to a wave of period T = 1, with the

propagation Alfvènic speed λA = 1.

To check for numerical accuracy, we compare the initial conditions to the numerical

solutions after some arbitrary number of periods n. We measure the convergence rate by

measuring the relative error using equation 2.70 where χ is
{

By,Bz,vy,vz
}

for some time

t = nT and χ0 is their initial values at t = 0.

Figure 2.15 shows the profile of magnetic fields for the 1D version of this test problem,

obtained by setting the angle of propagation to α = 0◦. The second-order convergence rate

for this configuration is shown in figure 2.16.
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Figure 2.16: Convergence plot for 1D CP Alfvén wave with MC and Minmod slope limiter

For the 2D version, we set the propagation angle to α = 30◦. This is a truly

multidimensional problem since the x- and y-fluxes are different because that the wave’s

propagation is not along the diagonal of the computational boundary. Figure 2.17 shows

the magnetic fields at initial conditions and at some selected later time. The second-order

convergence rate for this 2D version is shown in 2.18.

2.4.6 Relativistic Circularly Polarized Alvèn Wave

In the limit of small amplitude where transverse relativistic effects may be neglected, the

circularly polarized Alvèn Wave in previous §2.4.5 is still a valid solution to the relativistic

MHD system. Here, we use it to investigate the convergence property of the relativistic

MHD module in GenASiS.
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Figure 2.17: Pseudocolor plot of magnetic fields for 2D CP Alfvèn wave at time t = 0,
t = 0.3, and t = 0.8 from top to bottom computed with 128×128 cells.
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Figure 2.18: Convergence plot for 2D CP Alfvèn wave with MC (top) and Minmod
(bottom) limiter for various quantities.
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Following Del Zanna et al. (2003), we use initial conditions slightly modified from

§2.4.5. Define a generic Cartesian reference frame: (ξ ,η ,ζ ) and set:

Bξ = B0 = 1, (2.101)

vξ = v0 = 0, (2.102)

vη = −Bη = Acos(2πξ ) , (2.103)

vζ = −Bζ = Asin(2πξ ) , (2.104)

where as before A = 0.01 is the amplitude of the wave. We also set the uniform density

ρ = 1 and pressure p = 1. For the 1D case we have (ξ ,η ,ζ ) = (x,y,z), which yields the

following initial conditions for the fluid velocity and magnetic fields:

[vx,vy,vz] = [0,Acos(2πx) ,Asin(2πx)] , (2.105)

[Bx,By,Bz] = [1,−Acos(2πx) ,−Asin(2πx)] , (2.106)

on the computational domain [0,1]. For the 2D case, we consider the propagation along the

x = y direction; thus, we have

(ξ ,η ,ζ ) =
(
(x+ y)/

√
2,(−x+ y)/

√
2,z
)

. (2.107)
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Figure 2.19: Convergence plot for 1D CP Alfvén wave with MC and Minmod slope limiter
in relativistic MHD.

This gives us the following values for the fluid velocity and magnetic fields:

vx = −Acos
(

2π(x+ y)/
√

2
)

/
√

2, (2.108)

vy = Acos
(

2π(x+ y)/
√

2
)

/
√

2, (2.109)

vz = Asin
(

2π (x+ y)/
√

2
)

, (2.110)

Bx =
Bξ −Acos

(
2π(x+ y)/

√
2
)

√
2

, (2.111)

By =
Bξ +Acos

(
2π(x+ y)/

√
2
)

√
2

, (2.112)

Bz = −Asin(2π(x+ y)/
√

2), (2.113)

on the computational domain x = [0,1/cos(π/4)] and y = [0,1/sin(π/4)].

As before, we measure the L1 norm relative error of the magnetic fields after one period

as compared to the initial condition. Figures 2.19 and 2.20 plot this for the 1D and 2D

cases as a function of mesh resolution, which gives us the convergence of the scheme.
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Figure 2.20: Convergence plot for 2D CP Alfvèn wave with MC (top) and Minmod
(bottom) limiter for various quantities in relativistic MHD.
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Chapter 3

Poisson’s Equation Solver

3.1 Introduction

Some physics simulations require the solution of Poisson’s equation with an isolated

source distribution and a vanishing boundary condition at infinity. A common example is

the calculation of the Newtonian gravitational potential of a self-gravitating astrophysical

system. Poisson’s equation is

∇
2
Φ(x) = S(x), (3.1)

where S(x) describes the known distribution of the source that generates the potential Φ(x).

For instance, S(x) is proportional to the mass density in the context of Newtonian gravity,

and to the charge density in electrostatics.

Several methods exist to solve the discretized Poisson’s equation on a uniform grid.

These include, for example, multigrid methods, iterative / relaxation methods, several

matrix methods, and methods that employ Fourier transforms (for discussion of some these,

see for instance Hockney and Eastwood (1989); Swarztrauber (490); Dorr (1970)). Here

we implement, and extend to three dimensions, a particular method of the latter class by

Hockney (1970) (see also Hockney and Eastwood (1989) and Eastwood and Brownrigg

(1979)). (Another well-known approach for isolated systems based on Fourier transforms

by James (1977), also discussed in Hockney and Eastwood (1989), would not be as
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straightforward to parallelize and is not discussed here.) An advantage of this approach

is that discrete Fourier transform algorithms have been well-studied, with the Fast Fourier

transform (FFT) being the most commonly employed; it requires O(n logn) operations,

where n is the number of elements to transform. Several FFT implementations, some freely

available, also exist as libraries suitable for end-users.

The key issue addressed by the implementation described here is the parallelization of

an FFT-based algorithm for solving Poisson’s equation for an isolated system. Obtaining

such solutions in three dimensions requires resources that at present are most commonly

available in distributed-memory parallel computers, where large problems are decomposed

into multiple spatial sub-domains and distributed across different processes. While

Poisson’s equation must be solved globally on the computational domain and across

multiple processes, most FFT implementations require that all data be accessible on a

single process; therefore data movement and coordination across multiple processes are

key ingredients of our FFT-based approach.

We use the FFTW library (Frigo and Johnson, 2005) to compute FFT, but our use of it

is abstracted in such a way that other FFT libraries could be used without having to make

widespread changes throughout the code. We use MPI to manage data movement and

communication across processes, but our calls to message passing routines are abstracted

as well.

This chapter is organized as follows. Section 3.2 outlines the algorithm as well as

implementation details specific to our code. Test problems illustrating the convergence

properties and performance of our implementation are presented in Section 3.4. Section

3.5 contains concluding remarks.
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3.2 Solution Method

3.2.1 Formulation

Our problem is to solve equation (3.1) with the boundary condition Φ(x)→ 0 as |x| → ∞

(vanishing boundary condition). Use of the Green’s function

G(x) =− 1
4π |x|

, (3.2)

which satisfies

∇
2G(x) = δ (x) (3.3)

and obeys the vanishing boundary condition, yields the formal solution

Φ(x) =
∫

dx′ G(x−x′)S(x′). (3.4)

This integral may be evaluated with the help of the convolution theorem. Given the Fourier

transforms G̃(k) and S̃(k) of G(x) and S(x), the Fourier transform of the potential is

Φ̃(k) = G̃(k) S̃(k). (3.5)

The potential Φ(x) is then obtained by an inverse Fourier transform.

When the Fourier transforms are to be done with FFTs, use of a regular mesh with the

same spacings in each dimension is most natural; but in principle it should be possible to

use any mesh for which a coordinate transformation can bring the mesh point positions

to triplets of integers. For instance, to allow for a regular mesh with numbers of mesh

points nx,ny,nz and unequal mesh point spacings hx,hy,hz in the three dimensions, Eqs.
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(3.2)-(3.4) become

G(x̄) = −
hx hy hz

4π

√
hx

2x̄2 +hy
2ȳ2 +hz

2z̄2
, (3.6)

(
1

hx
2

∂ 2

∂ x̄2 +
1

hy
2

∂ 2

∂ ȳ2 +
1

hz
2

∂ 2

∂ z̄2

)
G(x̄) = δ (x̄), (3.7)

Φ(x̄) =
∫

dx̄′ G(x̄− x̄′)S(x̄′), (3.8)

where the values of the transformed coordinates x̄ corresponding to the mesh points are

triplets of integers ranging from 0 to nx − 1, ny − 1, nz − 1 in the three dimensions

respectively. (Note that the Jacobian of the coordinate transformation has been absorbed

into the numerator of equation (3.6), with the denominator still being 4π times the distance

from the origin.)

The implementation of boundary conditions at infinity on a necessarily finite compu-

tational domain can be handled ‘exactly’, that is to say, with only discretization error, via

a mesh doubling procedure and use of the standard periodic form of the discrete Fourier

transform (Hockney, 1970) (see also Hockney and Eastwood (1989) and Eastwood and

Brownrigg (1979)). Figure 3.1 illustrates this in two dimensions. The ‘active’ portion of

the mesh corresponds to the original computational domain, while the ‘inactive’ portions

are those arising from doubling the extent of the mesh in each dimension. The source

distribution is set to its known physical values in the active region, and to zero in the

inactive regions. Indexing cells by integer triplets p,q,r (the position of the mesh points in

transformed coordinates x̄), the Green’s function in the active and inactive regions is

Gp,q,r =−hx hy hz (4π)−1 (hx
2 p2 +hy

2q2 +hz
2r2)−1/2

G2nx−p,q,r = Gp,2ny−q,r = Gp,q,2nz−r

= G2nx−p,2ny−q,2nz−r = Gp,q,r

G2nx−p,2ny−q,r = G2nx−p,q,2nz−r = Gp,2ny−q,2nz−r = Gp,q,r


0≤ p,q,r ≤ nx,ny,nz

p+q+ r 6= 0

G0,0,0 =−hx hy hz [4π min(hx,hy,hz)]
−1 . (3.9)
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Figure 3.1: A two-dimensional illustration (redrawn after Hockney (1970)) of the mesh
doubling used to solve for the potential due to an isolated source. The ‘active’ mesh on the
lower left is the original computational domain with nx×ny cells.

That is, the Green’s function in the active region follows equation (3.6), and is set up in

the inactive regions in such a way that a periodic replication of the doubled mesh in all

dimensions yields equation (3.6) in the entire region −nx,−ny,−nz ≤ p,q,r ≤ nx,ny,nz

surrounding the origin. The value for G0,0,0 regularizes the singularity at the origin by

assigning it to be equal to the largest off-origin value on the mesh; for hx = hy = hz = 1,

this reduces (up to conventions for sign and the 4π factor) to the prescription given in

Hockney (1970).

3.2.2 Program Implementation

As with the rest of GenASiS, the implementation of the Poisson solver is also written

in Fortran 95, using an object-oriented programming style (to the degree convenient and

possible within that language). The library FFTW (Frigo and Johnson, 2005) provides our
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basic FFT functionality. We use MPI (MPI-Forum, 2010; Gropp and Lusk, 2010; Gropp

et al., 1999) to implement parallelization across multiple processes.

3.2.2.1 Domain Decomposition and Storage

Our code assumes that the source S(x) of Eq. (3.1) is available, and that the potential

Φ(x) is desired, in a simple ‘brick’ decomposition: in three dimensions, the computational

domain is divided in each dimension by nb = 3
√np, the cube root of the number of processes

np (see also §2.3 for more discussion of the decomposition). For simplicity we require

np = nb
3 to be a perfect cube (in three dimensions), and the number of mesh points in each

dimension to be evenly divisible by nb.

The brick decomposition is not convenient for FFTs, however, because a single

transform is most naturally and efficiently performed on data accessible to a single process;

therefore our solver has its working storage arranged in ‘pillars’ rather than bricks. The

‘length’ of what we term ‘x pillars’ spans the full extent of the computational domain in

the x direction. The ‘width’ of the x pillars is their extent in the y direction, which is 1/nb

times the y extent of the bricks. This implies another constraint imposed by our solver:

the number of mesh points ny/nb spanned by the y extent of a brick must itself be evenly

divisible by nb. The ‘height’ of the x pillars, which is their extent in the z direction, is

the same as the extent of the bricks in the z direction. By similar construction (and with

similar constraints on nz and nx), we have y pillars and and z pillars whose (width, height)

are taken to be their extents in (z,x) and (x,y) respectively. These ‘pillar decompositions’

cover the same total volume and contain the same total number of mesh points as the brick

decomposition, as illustrated in Fig. 3.2. Finally, we note that the lengths of the pillars

are doubled as necessary to accommodate the mesh doubling procedure, so that the pillars

span both the active and inactive portions of the mesh.

Because of the row-major nature of Fortran array storage, a pillar’s length, width, and

height correspond in our code to the first, second, and third dimensions of a rank-three

array. This allows a (width× height)-number of one-dimensional FFTs to be performed
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Figure 3.2: An illustration of the transformation from brick decomposition to x pillars
from a three-dimensional mesh assigned to twenty-seven processes. Here only the first
(lowest in the z direction) xy slab of bricks is shown; other slabs independently follow the
same transformation. The left panel shows the whole computational domain decomposed
into bricks, demarcated by solid lines and assigned to processes labeled by the numbers
in solid circles. Dashed lines in the left panel mark the chunks of data that need to be
sent to the processes labeled by the numbers in dashed squares in order to build the pillars.
As indicated by the dotted boundaries, processes [1,2,3], [4,5,6], and [7,8,9] form three
separate groups, each with its own subcommunicator within which chunks of data are
exchanged during the construction of the x pillars. In the right panel, we see that each
process (again, labeled by numbers in solid circles) also owns a pillar. The boundaries
between pillars are now marked by solid lines, and the dashed lines indicate the chunks of
data that the process received from other processes labeled by numbers in dashed squares.
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efficiently on contiguous data, specifically on lines containing a number of data points

equal to the pillar length. The construction of pillars from bricks and vice-versa requires

data movement across different processes. Using MPI, this is accomplished by creating

a subcommunicator for each group of processes that need to communicate data among

themselves, as illustrated in Fig. 3.2. For each group, a call to MPI AllToAll can then

be made with the group’s subcommunicator in order to achieve the construction of pillars.

These subcommunicators are saved to be used in the reverse process of deconstructing

pillars back into bricks.

3.2.2.2 Multidimensional Transforms

A multidimensional FFT can be accomplished as a sequence of sets of one-dimensional

transforms. The number of required operations is still of O(n logn), where n = nxnynz is

the total number of mesh points. One possibility for achieving computational efficiency

is to transpose data between transforms in subsequent dimensions in order to achieve

contiguity of memory access in each dimension. In any case, such transpose operations

become a necessity in a distributed memory environment if parallelization of individual

one-dimensional transforms is to be avoided.

The sequence of transforms and transposes is as follows. Data are initially loaded into

the solver’s x pillars: during initialization the Green’s function is set up directly in the x

pillars according to Eq. (3.9), while the source is transferred from the brick decomposition

to the x pillars at the beginning of every solve. With data loaded in x pillars, multiple one-

dimensional transforms in the x dimension are simultaneously performed by all processes.

The y pillars are then populated, independently in separate xy ‘slabs’, as illustrated in figure

3.3. For each slab a separate MPI group with its own subcommunicator is created; thus

there are nb = 3
√np subcommunicators, each of which has nb

2 processes. Within each

subcommunicator a call to MPI AllToAll transposes the data from x pillars to y pillars

so that FFTs can be performed in the y direction. Similar transposes in yz slabs allow

FFTs to be performed in z pillars. Here the multiplication of the transforms of the Green’s
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Figure 3.3: An illustration of the transpose of x pillars to y pillars on a three-dimensional
mesh assigned to twenty-seven processes. As before, only the first (lowest in the z
direction) xy slab is shown. The solid rectangles demarcate data owned by different
processes, labeled by numbers in solid circles. Dashed lines mark chunks of data that
need to be sent to (left panel) and received from (right panel) processes labeled by numbers
in dashed boxes. In this example, a slab with 9 processes forms a single MPI group with its
own subcommunicator, and the transpose is accomplished with a call to MPI AlltoAll.

function and the source takes place as well, with the resulting Fourier-space solution of

the Poisson equation overwriting the transformed source distribution. A reverse sequence

of backward transforms and transposes gets the solution (modulo a normalization factor

due to the multiple transforms) back into real space, stored in the x pillars. Finally the

solution is redistributed from the active portion of the x pillars to the brick decomposition,

overwriting the storage in which the source was delivered.

This sequence of transforms and transposes makes use of permanent storage for the

source distribution in x, y, and z pillars, which at the end of the solve is reused to store

the potential. This same storage is then updated with a new source distribution on the

next call to the Poisson solver. The transform of the Green’s function is computed only

once, and stored permanently in z pillars, when the solver is initialized. Computation of

the transformed Green’s function requires x pillars and y pillars, but these are deallocated

at the end of the initialization.
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3.3 Coupling to Hydrodynamics

Gravitational potential is coupled to the hydrodynamics as momentum and energy sources

in the conservation equations. To include these sources, we modify equations 2.1 – 2.3 as

the following:

∂D
∂ t

+
∂

∂xi

(
ρvi) = 0, (3.10)

∂S j

∂ t
+

∂

∂xi

(
ρv jvi + pδ

i j) = −ρ
∂Φ

∂x j , (3.11)

∂E
∂ t

+
∂

∂xi

([
e+ p+

1
2

ρv jv j
]

vi
)

= −ρvi ∂Φ

∂xi . (3.12)

The mass conservation equation 3.10 has not been modified from the original equation

2.1 and is only included here for clarity and completeness. The right-hand side of

the momentum conservation equation 3.11 is the gravitational force, while we term the

the right-hand side of the energy conservation equation 3.12 the ‘gravitational power’.

Equations 3.10 – 3.12 describe self-gravitating fluid. The source terms retain the same

forms in the MHD equations.

Because gravitational potential is smooth, its gradient is computed using second-order

central difference without slope limiter on the grid. As in the case of the hydrodynamics

variables, after the potential is obtained, the values in the cells that border process

boundaries are exchanged to their nearest-neighbor cells that are owned by other processes

via point-to-point communications (see §2.3) to facilitate the gradient computations of

the gravitational potential in these cells. For the cells that border the computational

domain, we use first-order forward or backward differences to compute the gradient of the

gravitational potential for inner and outer boundaries, respectively. This results in a less

accurate gravitational force and gravitational power near the computational boundaries,

but we expect the domain boundaries to have negligible effect on the dynamics inside the

computational domain.

The gravitational potential is computed in ‘operator splitting’ fashion. After initial

conditions are set, the potential due to the mass distribution is computed. This is used
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as the source terms for the integration of the hydrodynamics equations. At the end

of the timestep, new mass distribution is obtained, which is then used to compute new

gravitational potential. Since we use second-order two-step Runge-Kutta scheme for the

time-stepping algorithm (see §2.1.1), gravitational potential is computed after each Runge-

Kutta step. In our experience this gives better and more accurate results than updating the

potential only after the full Runge-Kutta integration.

Self-gravity introduces a new dynamical timescale to be considered. The free-fall time

for every mass shell to reach the center (r = 0) of a spherical gas with uniform mass density

ρ is (see also 3.4.4)

tff =

√
3Pi

32Gρ
. (3.13)

In addition to the CFL condition (see 2.1.1), this gives a constraint for the size of timestep

that can be taken for the integration of the conservation equations with gravitational sources

to guarantee a stable algorithm. Therefore we take the timestep for the integration to be

∆t = min{αtff,∆tCFL} , (3.14)

where ∆tCFL is the timestep given by the CFL condition, and α is an arbitrary factor which

we usually set to 1×10−2.

3.4 Numerical Results

In this section we present some numerical results illustrated by several test problems.

The test problems chosen were of similar nature with the ones commonly encountered

in astrophysical simulations. The test problems described here have analytical solution,

which we can use to verify the correctness of our implementation. We also investigate

the numerical convergence of the implementation with respect to mesh resolution. We

run each problem on a domain decomposed to large number of processes to illustrate the

scaling behavior of the algorithm on parallel computers.
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3.4.1 Gravitational potential of spherical uniform mass

We consider the potential of sphere with radius R that has uniform mass density ρ . The

gravitational potential as a function of radius r from the center of the sphere has a simple

analytical solution:

Φ(r) =


Gπρ

(
2
3

r2−2R2
)

for r ≤ R

−Gπρ
4R3

3r
for r > R.

(3.15)

We compute the potential for a sphere of radius R = 1 and mass density ρ = 1 in a

Cartesian computational box with its inner and outer boundary at [−1.2,+1.2] respectively

in all dimensions. The sphere is centered on the origin of the coordinate system. For

each mesh resolution, we calculate the potential in two ways: first, by using the analytical

solution above with r =
√

x2 + y2 + z2, and second, by using our implementation of the

Poisson solver. By varying the mesh resolutions, we can check for the convergence

properties of our solver with respect to spatial resolution. The potential for this test problem

is shown in Figure 3.4.

We use the usual definition of L1 norm to measure the relative error of potential

computed by our solver compared to the analytical solution, as given in equation 2.70.

Figure 3.5 illustrates the distribution of the relative error on the grid for a certain resolution,

which is representative (by different constant factor) of the error distribution for other

resolution.

Figure 3.6 shows the result of convergence test of our solver. We see that the

convergence of the error trend is better than first order.

3.4.2 Gravitational potential of an homogeneous spheroid

A more general case of the previous test problem is the potential of a spheroid with a

uniform mass-density distribution. Here we consider a spheroid with uniform density ρ .

The spheroid was formed by an ellipse centered at the origin and rotated about the z axis,
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Figure 3.4: The potential of a spherical uniform mass with mass density ρ = 1. The figure
is a slice through the three-dimensional mesh crossing the origin to show the xy-plane. The
solid black line indicates the surface of the sphere at radius R = 1. The mesh resolution is
256 cells in each dimension.
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Figure 3.5: The relative error of the potential for spherical uniform mass as described by
equation 2.70, but without the summation over all cells. The mesh resolution is 256 cells
in each dimension. The figure is a slice through the mesh showing the xy-plane. We see
that the largest errors are on the surface of the sphere because of the nature of the Cartesian
grid.
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Figure 3.6: Convergence test of potential for spherical uniform mass. The L1-norm
relative error of the computed potential as compared to the analytical solution is plotted as
function of the following mesh resolution: [483,1443,2883,3843,5763,7683,11523]. The
dashed and dot-dashed lines give reference for the second and first order error convergence
respectively

81



and described by the equation
x2 + y2

a2 +
z2

b2 = 1, (3.16)

where a and b are the semi-diameters of the spheroid. The spheroid is oblate when a > b,

with its eccentricity defined as

e =

√
1−
(

b
a

)2

. (3.17)

The gravitational potential of a homogeneous spheroid is a simpler case of the potential of

a homogeneous ellipsoid given in Chandrasekhar (1987). Inside the spheroid, it may be

expressed as (Ricker, 2008):

Φ(x,y,z) =−πGρ
[
A
(
2a2− x2− y2)+B

(
b2− z2)] , (3.18)

where

A =

√
1− e2

e3 sin−1(e)− 1− e2

e2 , (3.19)

B =
2
e2 −

2
√

1− e2

e3 sin−1(e). (3.20)

Outside the spheroid, the potential is given by

Φ(x,y,z) =−2πρG
ab
e

×
[

tan−1(h)− 1
2a2e2

{(
x2 + y2)( tan−1(h)− h

1+h2

)
+2z2 (h− tan−1(h)

)}]
, (3.21)

with

h≡ ae√
b2 +λ

, (3.22)

where λ is the positive root of the equation

x2 + y2

a2 +λ
+

z2

b2 +λ
= 1. (3.23)
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Figure 3.7: The potential of homogeneous spheroid with eccentricity e = 0.9 and semi-
major axis a = 0.5 on a mesh with spatial resolution of 384 cells in each dimension. The
figures are slices of the mesh through the origin showing both the xy- and xz-plane. The
solid black line indicates the surface of the spheroid.

We compute the potential for a spheroid with eccentricity e = 0.9 and semi-major axis

a = 0.5 on a Cartesian computational box of size two in each dimension. As before, we use

a fixed uniform density ρ = 1. Figure 3.7 shows the computed potential for a certain mesh

resolution.

As in the previous test problem, we vary the mesh resolutions to test for the convergence

of the relative error L1-norm of the numerical solution as compared to the analytical

solution. This is shown in figure 3.9. Figure 3.8 illustrate the relative error distribution

of the numerical solution as compared to the analytical solution. From figure 3.9, we see

that our solver has higher than first order convergence, but less than second order in general.

3.4.3 Gravitational potential of homogeneous binary spheroid

In this test problem, we simply put two homogeneous spheroids separated by some

distance in our computational domain. We extend our computational domain in the x
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Figure 3.8: The relative error distribution of the homogeneous spheroid on a mesh with
resolution of 384 cells in each dimension. Slices of xy- and xz-planes are shown. As
before, the solid black line indicates the surface of the spheroid.

direction to be twice that used in the previous test problem so that the x dimension has

inner and outer boundaries at coordinate [−2,+2]. The spheroids are then centered on

coordinates [±1,0,0]. In order to maintain the same effective resolutions as our previous

test problem, we double the number of cells in the x dimension only, resulting in rectangular

computational box. Figure 3.10 shows the potential for this test problem.

The gravitational potential for this configuration is the sum of the potentials due to

both spheroid. Therefore we can generate the analytical solution for this test problem by

modifying the analytical solution found in Section 3.4.2 to account for the shift of the

spheroids’ center from the coordinate origin. This is done by substituting x− c for x in

equations 3.18, 3.21, and 3.23, where c is the x coordinate of the center of spheroid.

As before, we vary the mesh resolution for this test problem to do convergence tests of

our solver. This is shown in figure 3.11. We see a similar convergence trend of this test

problem as we have seen in previous test problem: our solver converges better than first

order, but not up to second order convergence.
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Figure 3.9: Convergence test of potential for a homogeneous spheroid with mesh
resolutions [483,1443,2883,3843,5763,7683,11523].
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Figure 3.10: The potential for homogeneous binary spheroids. Each spheroid has mass
density ρ = 1. The spheroid has very low eccentricity e = 0.28 with semi-major axis
a = 0.5. Solid black lines indicate the surfaces of the spheroids. The mesh resolution is
768×384×384 cells.
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Figure 3.11: Convergence test of the potential for a binary spheroid with uniform mass
with the same effective mesh resolutions as the previous test problems.
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3.4.4 Pressureless (Dust) Collapse

In the previous test problems we have considered only the evolution of the magnetohydro-

dynamics conservation equations with the absent of source term. We have also shown test

problems in which we test the accuracy and correctness of our Poisson’s equation solver

to solve for the gravitational potential due to a mass distribution in the static case. This

test problem requires the evolution of the hydrodynamics conservation equations coupled

with the gravitational source term due to the mass distribution. Therefore, it allows us to

test both the Poisson’s equation solver in dynamical fashion and our implementation of

operator-splitting for the source term of the conservation equations.

We start with an initial condition of a homogeneous pressureless gas of initial density

ρ0 with radius r0. Because there is no pressure support, the sphere collapses due to

gravitational forces, starting with free-fall of the gas which increases the density of the

sphere. Hunter (1962) and Stone and Norman (1992) give an analytic solution for the

radius and density as a function of time t:

r = r0 cos2
β , (3.24)

ρ = ρ0 cos−6
β , (3.25)

where

β +
1
2

sin2β = t

√
8π

3
Gρ0. (3.26)

We can then define the free-fall time, i.e. the time for every mass shell to reach r = 0, as

tff =

√
3π

32Gρ0
. (3.27)

We initialize this test problem by setting a uniform sphere of gas with radius r0 = 1

and density ρ0 = 1 on 3D Cartesian mesh with domain boundary ±1.2 in all dimension.

This setup also allows us to check that the code does multidimensional evolution correctly.

Since this problem has an inherent spherical symmetry, a 3D numerical evolution should
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also gives us a spherically symmetric result. For this setup, we find the free-fall time to be

tff = 0.543. We set the simulation to stop at t = 0.535, which gives us density increase of

nearly three orders of magnitude from the initial value.

Figure 3.12 shows the results of numerical simulations as evolved by GenASiS for

several mesh resolutions. With a unigrid mesh in this problem, as the sphere collapses,

fewer cells are available to resolved the sphere with increasing density. This situation

is illustrated clearly in figure 3.12a where only several cells are available to resolved

the sphere due to the low resolution of the simulation, producing an inaccurate result

as compared to the analytical result. This is improved by putting more cells on the

computation domain to increase the mesh resolution. The central density of the sphere

is better resolved and more accurate with higher resolution simulation, as shown on other

panels in figure 3.12.

We see that there is an anomalous density spike near the density cliff. The most likely

cause of this is the inaccuracy of the pressure gradient and gravitational force balance that

manifests itself more in this region.

We check the convergence of our numerical relative results to the analytical solution by

computing the L1 norm relative error (equation 2.70) for each resolution. Figure 3.13 shows

the L1 norm relative error of the numerical to the analytical solution as function of mesh

resolutions. This shows that the numerical solution has less than first order convergence.

The bad convergence is due to the anomalous density spike previously mentioned.

3.4.5 Hydrostatic Polytrope

In this test problem, we investigate the code’s ability to maintain a hydrostatic equilibrium

solution numerically during dynamical evolution. As in the previous test problem, this test

requires the evolution of hydrodynamics equations with the gravitational source term. A

polytropic equation of state is used in this test problem; therefore, unlike the dust collapse

problem, the energy conservation equation is also evolved in this test problem.
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Figure 3.12: Pressureless collapse with various mesh resolutions. The dotted line shows
the density as computed by the analytical formula. The filled circles show the numerical
result as evolved by GenASiS with slope limiter parameter θ = 2.0.
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Figure 3.13: Convergence test of the pressureless collapse test problem. The L1 norm
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The equations for hydrostatic equilibrium describe the balance of gravitational force

that compresses the gas and pressure gradient force that expands the gas. This can be

expressed as the differential equations:

dm
dr

= 4πr2
ρ(r)dr, (3.28)

d p
dr

= −G
m(r)

r2 ρ(r), (3.29)

with may be combined to give the second-order differential equation:

1
r2

d
dr

(
r2

ρ(r)
d p
dr

)
=−4πGρ(r), (3.30)

where m(r) is the enclosed mass as function of radius r. Equation 3.30 is closed when one

specifies an equation of state to relate the pressure and density. In this case we consider a

polytropic equation of state as described in §2.2.

By introducing the dimensionless variables ξ and θ , equation 3.30 can be rewritten to

yield:
1

ξ 2
d

dξ

(
ξ

2 dθ

dξ

)
+θ

n = 0, (3.31)

where

ρ = ρcθ
n

ξ = r

(
4πG

(n+1)κρ
(1−n)/n
c

) 1
2

, (3.32)

where ρc ≡ ρ(r = 0) is the central density, and n is the polytropic index. This is known as

the Lane–Emden equation.

In terms of the new variables, the differential equations may be solved using the

boundary conditions:

θ(0) = 1,
dθ

dξ

∣∣∣∣
ξ=0

= 0, (3.33)

which imply that the central density ρc = ρ(0) be reproduced and that the pressure gradient
dP
dr = 0 at the origin. Equation 3.32 can then be integrated from the origin, where r = ξ = 0,

until the point where ξ = ξ1 where θ vanishes. This variables can be transformed back to
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relate to physical quantities of interest. For example, the radius R and total mass M are

given by:

R = aξ1 =
(

(n+1)κ
4πG

) 1
2

ρ
1−n
2n

c ξ1, (3.34)

M = 4πa3
ρc

[
−ξ

2 dθ

dξ

]
ξ=ξ1

. (3.35)

For polytropic index n = 1, the Lane-Emden equation has analytical solution:

θ =
sinξ

ξ
, ξ1 = π. (3.36)

Therefore by specifying the total mass M and radius R of a gaseous sphere one can get a

profile of density and pressure as function of radius that stays in hydrostatic equilibrium.

Using the analytical solution previously described, we initialize the computational

domain with a hydrostatic polytrope star of mass 1.5M� with radius 10 kilometers

and polytropic index n = 1—a configuration that mimics a typical neutron star—on a

computational domain with its inner and outer boundary coordinate at±20 kilometers in all

dimensions. The central density of this objects is about 2.34×1015 gm cm−3, located at the

origin of the coordinate. We evolve this initial condition numerically up to 10 milliseconds,

a timescale that is relevant to physical simulation such as neutron star mergers. We compare

the density and pressure profile at the end of the evolution with our initial condition and

calculate the L1 norm relative error.

The analytical solution produces continuous but steep density and pressure drops near

the surface of the star that go to zero. This and the atmospheric density surrounding the

star, which is set very close to zero, would often produce a high velocity matter but very

small density, due to inaccuracy in the numerical computation. Left alone, this would cause

the simulation to take very small time steps due to the CFL condition. To avoid this, for

this test problem we put a condition in our code (which is adjustable through a runtime

parameter) to set the velocity to zero for density below a certain threshold. This threshold

is set to 3.0×105 gm cm−3, ten orders of magnitude below the central density.
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Figure 3.14: Density profile for hydrostatic polytrope. The symbols show the profiles for
several different mesh resolution after being evolved for 10 milliseconds. The analytical
solution is plotted as a dashed line for reference.

Figure 3.14 shows the density profile of this test problem with several different

resolutions after being evolved for 10 milliseconds. We see that at the end of the

simulation the star is slightly diffused out, accompanied by a decrease of the central density,

as compared to its initial condition. This is more pronounced in the lower resolution

simulation because of the higher inaccuracy in the balance between gravity and pressure

gradient. Another way to see this is by plotting the central density of the star as a function

of time. Figure 3.15 shows such a plot for several different resolutions. We see that for

simulation with total number of cells less than 963, which correspond to approximately

0.41 kilometer spatial resolution, the central density has a decreasing trend. This gives a

minimum of spatial resolution needed for any simulation that uses hydrostatic model.
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Figure 3.15: Central density of a hydrostatic polytrope plotted as function of time for
several different resolutions.
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The oscillation of the central density is expected, as a direct result of numerical solution

with a finite resolution. Slight discrepancies in the balance between pressure gradient and

gravity may cause the star to diffuse if the pressure gradient wins initially. As the star

diffuses out, the pressure gradient becomes smaller. This tips the balance toward gravity,

and let it counteract by compressing the star. As the gravity keeps compressing the star

and increases the density, the stiff equation of state results in a large enough pressure

gradient to counteract this, and so in the next time step it is able to counteract gravity and

expand the star. This cycle continues, which results in the oscillation that we see in figure

3.15. For sufficient resolution, the net result should be a small and damped oscillation

(albeit very slowly) around a constant central density. Figure 3.15 shows this property,

and therefore shows that GenASiS is able to maintain hydrostatic equilibrium for some

dynamical timescale provided that a sufficient mesh resolution is used.

We measure the error convergence of our code for this test problem. Figure 3.16 shows

the L1 norm relative error of the density profile at t = 10 milliseconds as compared to the

initial density profile as function of resolutions. As expected for test problems with smooth

flows, we get close to second-order error convergence.

3.4.6 Scaling

We measure the weak scaling of our solver by increasing the number of parallel processes as

we increase the mesh resolution, thereby maintaining a constant amount of work assigned

to each process. We use the homogeneous spheroid and binary spheroid test problems as

representatives for the weak-scaling test. For each measurement we run the solver 2500

times and take the average to get the time per solve. The scaling tests were carried out on a

Cray XT-4 with quad-core 2.1 GHz AMD Opteron 1354 (Budapest) processors and 8 GB

of DDR2-800 memory per node. Figure 3.17 shows the weak scaling plot for the solver.

The black square symbols with a solid line show the scaling for the homogeneous spheroid

problem; the red circle symbols with a solid line indicate the scaling for the binary spheroid

problem. For comparison, we also plot the theoretical weak-scaling curve for the algorithm

96



100
Number of Cells / Dimension

0.01

1

L
1 

E
rr

or

n
-1

n
-2

density
pressure

Figure 3.16: Convergence rate of hydrostatic polytrope test problem. The L1 norm relative
error of density, and pressure are plotted as function of mesh resolutions. Reference lines
(dashed lines) for second-order and first-order convergence are also shown.

97



with O(n log(n)) property as dotted black line for each test problem. Specifically, we plot

a(log(n)/3 + log(b)) where n is the number of processes and a and b are constant. The

rationale for this is as follow. To investigate weak scaling we maintain the amount of work

per process. Therefore the algorithmic dependent on the number of cells to be transformed

is a proportional to the number of processes. The second term, log(b) is this proportionality,

where we have used the identity log(xy) = log(x) + log(y). We set b = 2× 48 for the

homogeneous spheroid test problem since 48 is the number of cells per process in one

dimension, and the factor 2 comes from the mesh doubling procedure. (For similar reason,

b = 2×96 for the binary spheroid test problem, since the binary spheroid test problem uses

twice as many cells as the homogeneous spheroid problem to maintain the same effective

resolution, as described in §3.4.3.) The factor 1/3 on the first term comes from the fact that

each process the transform on the pillars whose lengths are proportional to the cube root of

the total number of processes. In other word, this is the number of cells to be transformed

by each process in one dimension spanning the entire computational domain. Here we

have used the identity log(n1/3) = log(n)/3. The factor a is an arbitrary constant that

could be hardware or algorithmic dependent, but independent of the number of operations.

This affects the rate of increase or the slope of the algorithmic growth. We determine a

in our theoretical curve simply by matching the first point of the theoretical curve to the

experimental value. The experimental curves includes the computation and communication

required to do a single solve. Therefore, if we assume that a remains constant in the

hardware and algorithm as number of processes grows, we can attribute the increase in

solution time for the experimental curves to the communication required to do the bricks to

pillars construction (and vice-versa), and the transpose during multidimensional Fourier’s

transform. However, the slope of increase is relatively very small and we find this to be

acceptable.
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3.5 Conclusion

We have described our implementation of a parallel solver for Poisson’s equation of an

isolated system on unigrid mesh. We use Fourier’s transform as the solution method

for Poisson’s equation. We utilize a common protocol Message Passing Interface for

communication across processes on distributed memory system to do a global solve on

domain decomposed to multiple processes. We have also shown test problems, numerical

convergence, and scaling behavior of our program. The implementation of this solver,

coupled with magnetohydrodynamics, allows us to do simulations with self-gravity in

GenASiS.
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Chapter 4

Towards Adaptive Mesh Refinement

4.1 Introduction

Adaptive Mesh Refinement (AMR) is a technique to dynamically increase the spatial

resolution of numerical simulations only where needed. This allows conservation of

memory and computational cost of the simulations. This saving has become a necessity

since advances in scientific modeling have reached a point where the required resolution in

uniform meshes is taxing and even exceeding the resources of the largest supercomputers.

AMR provides a way to ameliorate this computational demand by only increasing

resolution where needed to capture the physical processes of interest.

There are two different approaches to AMR that have seen widespread usage in com-

putational astrophysics. In block-structured AMR (Berger and Oliger, 1984; MacNeice,

2000), cells are organized as blocks of grid cells. The coarsest grid, consisting of several

blocks, covers the entire computational domain. Each block may be refined, creating

finer nested grids where higher resolution is required. Since each grid is composed of

structured blocks, any single grid fluid flow solver may be re-used without modifications.

However, block-structured AMR is often inflexible in capturing complex flow, leading

to either possible overlapping of blocks at the same level of refinement and duplication

of cells, or wasting of computational cells on smooth flow covered by the same refined
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blocks. A cell-by-cell AMR (Khokhlov, 1998), on the other hand, refines only individual

cells. This flexibility leads to more saving of memory since each cell can be refined or

coarsened as needed, independently of others. The cells are managed using ‘fully threaded

tree’ data structures that provide a way to access and traverse the tree in parallel. This

approach, however, requires maintenance of the tree and does not necessarily lend itself

to straightforward re-use of solvers as in block-structured AMR. Care must also be taken

in its implementation to avoid irregular memory referencing that can produce non-scalable

code.

The flexibility and reduced memory footprint of cell-by-cell AMR have led us to adopt

it in GenASiS. The current version of GenASiS does not have a mature implementation of

AMR yet. However, we have developed some techniques and the necessary groundwork

that will be necessary to have a scalable and fully functioning cell-by-cell AMR. In the

next two sections, we discuss our approaches to the evolution of the fluid dynamics with

AMR, and a scheme for the solution of the Poisson’s equation for mesh with refinements,

necessary for simulations involving self-gravity.

4.2 Fluid Dynamics for Adaptive Mesh Refinement

4.2.1 Mesh and Tree Construction

Our implementation of cell-by-cell AMR uses the fully threaded tree (FTT) structure of

Khokhlov (1998). In three-dimensional space, cells are organized in an oct-tree—a tree

that has exactly eight children for each internal node that is not a leaf node—with each

node of the tree representing a cell. A cell is either a refined or unrefined cell, which is

represented by a parent node that has children, or a leaf node. The root of the tree covers

the entire computational domain. Adaptivity is provided by splitting a cell into eight cells

(bisection in each dimension), giving cells of higher resolution in that region of space. This

is analogous to creating eight children for that particular node that represent the refined cell.

This construction can be extended arbitrarily deep, providing arbitrary levels of refinement.
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Figure 4.1: Logical relationship between cells in fully threaded binary tree (redrawn after
Khokhlov (1998)). The width of the bar lines represent the size of the cells. Arrows
represent pointers to neighbors, and lines represent pointers to children.

FTT structure adds more information to the tree to provide easy access to a cell’s

children, neighbors, and parents by threading the tree in all possible directions. This is

necessary for an efficient algorithm of the refinement and integration of the hydrodynamics

equations. For every cell in the tree, the following information is available: the level of the

cell, a Boolean flag (true / false) indicating whether or not the cell has children, a pointer

to the parent cell, pointers to its eight children, and pointers to its six neighbor. Figure

4.1 illustrates this logical relationship between cells in a binary tree (for simplification,

but may be generalized to an oct-tree). The level of a cell corresponds to the depth of the

node representing the cell in the tree. FTT provides neighbor information even for cells of

different levels. However, the neighbor relationship is not reciprocal for cells of different

levels, as seen in figure 4.1. Neighboring cells are not allowed to differ by more than one

level.

Physical state information (e.g. the primitive and conserved variables of the mag-

netohydrodynamics) need to be associated with each cell in the oct-tree. In GenASiS,

rather than keeping this information with the cells in the tree structure, the physical

state resides in a flattened ‘data’ array as a large contiguous blocks of memory. Each

cell in the tree is given a ‘cell number’ that refers to the array index of the data. This
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separation of ‘metadata’—the oct-tree representing the mesh structure—and the ‘data’ is

intended to provide computational efficiency by concentrating the floating point operations

on contiguous memory block. The mapping of the metadata to the data is afforded by

constructing a large one-dimensional array of cells, neighbor cells (in each direction),

cell faces, and cell edges from the connectivity information implicit in the tree structure.

Floating point intensive operations such as integration of the hydrodynamics equations

are done utilizing these arrays only, avoiding much of the pointer referencing necessary

with tree traversal. These arrays are updated with the tree structure during refinement and

coarsening.

In implementing the cell-by-cell AMR in GenASiS, we follow object-oriented design

principle using the Fortran 95 standard. Cell is represented as an object zoneType that

contains information such as its parent (if it exists), pointer to its children (if not a leaf

cell), and its geometrical position in the computational domain. A collection of cells

(four or eight of them, in two or three dimension respectively) are contained in an object

zoneArrayType, representing a region of a spacelike slice. The children of a cell, which

represent a refinement of that cell, can then be contained in a zoneArrayType. This

structure can be extended arbitrarily deep. Figure 4.2 outlines this construction. The

zoneType also hold a number as an index of its position in the flattened data block. The

objects zoneType and zoneArrayType constitute the oct-tree. This object-oriented design

allows operation on the tree to be done via well-controlled interfaces.

A composite mesh is built from the union of all leaf cells. The composite mesh

therefore has multiple levels of refinement and varying resolutions covering the whole

computational domain. As in §2.3, parallelization is done by decomposing the domain

into multiple sub-domains. However, in the case of AMR, simple spatial decomposition

may result in unbalanced workload on the processes since the same spatial region size

may be covered by different numberss of cells due to refinement or coarsening. Therefore,

domain decomposition is achieved instead by walking through the composite mesh similar

to a Morton space-filling curve (Morton, 1966), which results in a mapping of the three-

dimensional mesh to a one-dimensional curve representing a string of cells. The string

104



ZoneArrayType

Zone

Next

Previous

ZoneType

number

neighbor

ZoneArray

ZoneType

number

neighbor

ZoneArray

ZoneType

number

neighbor

ZoneArray

ZoneType

number

neighbor

ZoneArray

Figure 4.2: Illustration of data structure for the implementation of fully threaded tree.

is cut into pieces of uniform length. The pieces (representing cells) are distributed to the

processes, yielding roughly equal workload for each process (since the workload depends

only on the number of cells, regardless of the resolution of the cells). This load-balancing

has to be maintained as simulation proceeds.

4.2.2 Fluid Evolution

The list of cell faces (cell interfaces) that we built from the connectivity of the tree allow

fluxes to be evaluated at arbitrary order and even in parallel. For each cell face, fluxes are

evaluated, changes to cell values on the left and right of the face are stored on an array to

be applied, then fluxes are discarded. As in §2.3, fluxes on the interface for the ‘sent cells’

are calculated first, followed by by the fluxes across the faces of the ‘unsent cells’.

Since updates to the cell values are organized by cell faces, the evaluation of fluxes

across cells of different sizes can be treated the same way as fluxes across cells with the

same size. The illustration in figure 4.3 shows two possible situations for fluxes across

cells of different sizes. Cells c2 and c4 share the same right neighbor, cell c5, to form a

fine-coarse interface. The fluxes F45 are evaluated as usual, and the change is applied to
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Figure 4.3: Illustration of flux evaluation across fine-coarse and coarse-fine interface on
mesh with refinements.

the left cell (i.e. cell c4) and right cell (i.e. cell c5). Similarly, change due to flux F25 are

applied to cell c2 and cell c5. Both fluxes, F25 and F45, contribute to the change of cell c5.

Coarse-fine interfaces are treated the same way. Fluxes F56 and F58 are evaluated, and

changes for cell c5, c6, and c8 are stored. The change for c5 are the contributions due to F56

and F58. One thing to note is the usage of cell face area to calculate the changes to the cell.

On the coarse-fine or fine-coarse interfaces, the cells have different face area. For example,

the right face area of c4 is half that of left face area of c5. Therefore the correct way to

compute the changes on the cells with these interfaces is to use the minimum of the shared

face area. For example, the change to c5 due to F45 is F45 multiplied by the minimum of

right face area of c4 and left face area of c5. Combined with the fluxes contribute to the

change to c5, this sums up to the correct change to c5.

On meshes with refinements, the CFL condition also varies due to the variation of

cell sizes on the mesh. We take the simple approach of using the synchronized timestep

on the mesh just by taking the maximum timestep allowed by the CFL condition. This

is more straightforward than the sub-cycling approach used by Khokhlov (1998). At the

end of each timestep, we use the refinement criteria (see §4.2.3) to check whether any

refinement or coarsening is needed on the mesh. This is iterated as many times as necessary

until the criteria tell us that no further refinement is necessary, at which time we start the

next timestep. As previously mentioned, for every refinement (or coarsening), the lists of
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neighbor cells, cell faces, and cell edges are rebuilt from the connectivity information in

the oct-tree.

4.2.3 Refinement Criteria

Approaches to refinement criteria are mostly problem dependent. One approach is to

measure the convergence of a solution, which allows control of the solution accuracy

on-the-fly (Berger and Collela, 1989). Another approach is to use the gradient of some

quantities to show where to expect large errors in the solution, and therefore tell us where

refinements are needed (Aftosmis et al., 1995; Melton et al., 1995). We have used this latter

approach for the refinement criteria in GenASiS.

The gradient of a variable χ is used to compute a refinement indicator ξ as

ξ
χ

i = max
∀ j

(
|N(χi, j)|− |χi||

max(|N(χi, j)|, |χi|)

)
, (4.1)

where the index i indicates the cell index and the operator N(χi, j) gives the value of the

variable χ at the neighbor cell j of cell i. The variable χ may represent mass density,

pressure, velocity, internal energy, etc. For every cell, a single refinement indicator ξ is

obtained as

ξi = max
∀χ

(ξ χ

i ), (4.2)

where 0 ≤ ξi ≤ 1. Two predefined constant, ξrefine and ξcoarsen, are needed to indicate

whether a leaf cell must be refined or coarsened. Refinements happen where ξi > ξrefine,

while coarsening is done for all ξi < ξcoarsen. The latter can only be done if the cells were

not just refined.

The refinement indicator ξ may fluctuate around critical values ξrefine and ξcoarsen that

causes cell to be falsely refined or coarsened. To avoid this, ξ is smoothed before it

is used for refinement. An analogy with the propagation of a reaction-diffusion front is

appropriate for smoothing ξ (Khokhlov, 1998), where ξ is considered as a concentration
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of some reactant obeying
∂ξ

∂ t̃
= K∇

2
ξ +Q (4.3)

for some fiducial time t̃. K is a constant diffusion coefficient, given the value K = 2−2lL2

where l is the level of refinement of the cell and L is the size of the computational domain.

The reaction rate Q is

Q =

 1, if 1 > ξ > ξrefine,

0, otherwise.
(4.4)

Equation 4.3 has a steady-state form

−Sξ

∂ξ

∂x
=

∂ 2ξ

∂x2 +Q, (4.5)

with a reaction front that moves with constant speed

Sξ = 2−lL
√

ξrefine (4.6)

and has a thickness

δξ '
2−lL√
ξrefine

. (4.7)

The refinement indicator ξ obtained from equations 4.2 for every cells are used as the

initial value for equation 4.3, which describes a reaction front propagating outward from

ξ > ξrefine with thickness 2-3 computational cells. As the front curvature decrease with

time according to the Huygen-Fresnel principle, the boundaries where ξ > ξrefine becomes

smoother. Isolated regions marked for refinement do not trigger reaction fronts themselves

due to the diffusion in the equation, provided that the area is less than δξ . This smoothing

then avoids ‘mesh thrashing’, a fluctuation of refinement and coarsening.

4.2.4 Numerical Example

Here we show a numerical example of hydrodynamics evolution with AMR as currently

implemented in GenASiS. We set up a two-dimensional (2D) counterpart of the Newtonian
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Riemann shock tube problem previously described in §2.4.1. The discontinuity separating

the ‘left’ and ‘right’ state is described by a line connecting the point (0.5,0.0) and

(0.0,0.5). The rest of the initial conditions are similar to the one-dimensional shock tube

problem.

To illustrate the AMR capability, we start with a very low uniform resolution of eight-

by-eight cells covering the whole computational domain, as shown in figure 4.4a. In that

figure, the left panel shows the domain decomposition into sixteen sub-domains owned by

sixteen different processes, indicated by colors. The right panel shows the mass density.

The discontinuity looks like a staircase due to the low resolution. The bar at the bottom

indicates the simulation time, initially at t = 0. There is no refinement yet in this figure.

The refinement criteria of equation 4.1 is triggered due to the steep gradient. The

mesh is refined before evolution even begins, as shown in figure 4.4b. Again on the

left panel, the composite mesh is shown with the domain decomposition. The regularity

of the decomposition is non-existent here due to refinement. The decomposition is such

that every process (color) has roughly the same number of cells, regardless of resolution.

Redistribution of cells is done by all the processes to form this decomposition from the

initial decomposition in figure 4.4b. For example, after process 1 (red) refines its top right

cell, it needs to send the newly created level-two cells, four of them, to process 2 (green),

as shown, to maintain load-balancing. Similarly, process 2 (green), knowing that it will

receive four newly created cells, sends 9 newly created level-two cells to process 3 (dark

blue). Thus point-to-point communications happens to all processes for the redistribution

of cells.

Note also the width of refined cells, which is roughly two-cells wide in each direction

from the discontinuity line that triggered the refinement. This is due to the smoothing of

the refinement indicator via reaction-diffusion of equation 4.3 to reduce mesh thrashing.

The refinement criteria is still satisfied due to the discontinuity, thus another refinement

is triggered. In fact, this discontinuity triggers refinements until the maximum levels of

refinement allowed (five levels) before the simulation proceeds. After every refinement,
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(a)

(b)

Figure 4.4: Initial conditions of the 2D shock tube problem with AMR shown in 4.4a. In
this and subsequent figures, the left panels show the domain decomposition with colors to
indicate processes that own the subdomains. The right panels shows the mass density. 4.4b
shows the mesh after one level of refinement and redistribution of cells. The bar and label
on the bottom left on each panel indicate the simulation time.

110



the cells are redistributed to maintain the load-balancing. This is shown in figures 4.5 and

4.6.

After reaching the maximum level of refinement (five level of refinements, giving six-

level mesh), the simulation proceeds. Figure 4.7 shows the evolution of the problem at

t ' 0.001 and t ' 0.052. We can see that the refinements tracks the shock front because of

the discontinuity. In this current version, coarsening is not yet implemented, therefore the

previously refined cells are not coarsened. Cells redistribution are being done throughout

the simulation, maintaining load-balancing of the processes.

Figure 4.8a shows the simulation at late time when t ' 0.327. The simulation is ended

at t ' 0.6, shown in figure 4.8b. Here the whole computational domain is fully refined

to the maximum level of refinement, and thus the domain decomposition becomes regular

again. This example shows the current AMR implementation for the evolution of fluid

dynamic in GenASiS.

4.3 Poisson Solver for a Mesh with Refinements

The fast direct method to solve the Poisson’s equation described in chapter 3 cannot be

employed directly on the composite mesh with multiple level of refinements. In our

implementation of AMR, the composite mesh is a union of leaf cells of the AMR tree

and therefore has varying mesh resolutions over the computational domain (see figure 4.9).

This violates the constraint of the Poisson’s solver with the FFT method. The solution

of the Poisson’s equation however, needs to be available on every level of refinement.

Furthermore, since the cells with higher level of refinement have higher resolution, a more

accurate source for the Poisson’s equation is also available on these cells and therefore

a better solution (i.e potential) is desirable. To this end, we have developed a variant of

multigrid method to obtain the solution of the Poisson’s equation on a mesh with multiple

levels of refinements in three dimensions. In this section we present the algorithm and

numerical results for a static test problem.
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(a)

(b)

Figure 4.5: 2D shock tube problem with two and three levels of refinements.
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(a)

(b)

Figure 4.6: 2D shock tube problem with three and four levels of refinements.
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(a)

(b)

Figure 4.7: Evolution of 2D shock tube problem with AMR.
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(a)

(b)

Figure 4.8: Evolution of 2D shock tube problem with AMR.
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4.3.1 Construction and Definitions

Our method starts by creating a non-uniform ‘level mesh’ for every level of refinement.

Non-uniform here means that for each mesh corresponding to a level of refinement, the

cells that exist on the level mesh are either parent cells on that level (cells that have been

refined) or leaf cells on that level. The cells themselves are still collinear (i.e. rectangular

in Cartesian coordinate). Therefore, each level mesh has only ‘islands’ of cells. Let us

call these cell the proper cells. For example, on the coarsest level mesh the cells cover the

entire computational domain since each cell on this level has to be either a parent cell or a

leaf cell. On each level mesh with higher level of refinement than the coarsest level, a layer

of exterior cells is also created. These are guard cells surrounding the proper cells, which

act as a boundary to the proper cells, and are created solely for this purpose. Figures 4.10

and 4.11 illustrate this construction.

The Poisson’s equation 3.1 needs to be solved on every level mesh. On the coarsest

mesh, we use the FFT method described in chapter 3, since the mesh is uniform. On other

level meshes, we discretize the Laplacian operator in similar manner to equation 2.14. This

yields a linear system for the values of Φ at the center of every cell on the level mesh.

Boundary values are needed to solve this system, and they are provided by the exterior

cells. The values of Φ at the center of the exterior cells are the prolongated values from the

coarser level mesh. The linear system is cast into its matrix representation, distributed over

several processes as each process fills in the portion of the matrix corresponding to its share

of cells. The system then may be solved by inverting the matrix representation. We rely

on PETSc library (Balay et al., 1997, 2008, 2009) to give us a programming interface to

create a distributed matrix for the linear system and perform the matrix inversion in parallel

over a large number of processes. PETSc uses the iterative method of a Krylov subspace

with preconditioner (Balay et al., 2008; Freund et al., 2008) to solve the system. A good

initial guess as the preconditioner is therefore at the heart of convergence of the iteration

within the specified error tolerance. In our multigrid algorithm, we aim to exploit this fact

by providing a good initial guess obtained from the values of the coarser level mesh via
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‘prolongation’ (defined below). This is key to the efficiency of our multigrid algorithm for

a mesh with refinements.

Let us define some terms before we continue with the algorithm. We use the notation

Ml to indicate mesh of level l, with lmin and lmax indicate the minimum (coarsest) and

maximum (finest) level of refinements. Similarly, the notation cl
i jk indicates a cell at

position i, j, k of refinement level l. The cell may be a leaf cell, or a parent cell, in

which case it has eight children which we denote cl+1
i′ j′k′ . This notation avoids the need to

enumerate the children of cl
i jk.

In our finite volume scheme, quantities are defined as cell-centered values. A value on

refined cell cl
i jk is ‘prolongated’ to its children cl+1

i′ j′k′ by reconstructing the value so that it

exists as cell center values on all cl+1
i′ j′k′ . The reconstruction is done by linear interpolation

on each dimension. The reverse operator, a ‘restriction’, takes the an average of the

cell-centered values of cl+1
i′ j′k′ (children cells) to create a cell-centered value in cl

i jk (parent

cell). Applying prolongation and restriction operator on a level mesh only means that the

operation is done on every cells on that mesh that have children (for prolongation) or parent

(for restriction).

We define a residual R(x) as a measure of error of the approximate solution Φ̃(x)

relative to the ‘exact’ solution Φ(x) of the Poisson’s equation 3.1

R(x) = S(x)−∇
2
Φ̃(x). (4.8)

The residual satisfies the equation (Ricker, 2008)

∇
2C(x) = R(x) (4.9)

due to the linearity of the Poisson’s equation. Adding the correction C(x) to the

approximate solution Φ̃(x) yields the correct solution Φ(x) of the original Poisson’s

equation for the source S(x).
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4.3.2 Multigrid Algorithm

Now we are ready to describe the algorithm to obtain the solution of Poisson’s equation

on every level mesh. The listing 4.1 shows the pseudocode of such an algorithm. The

algorithm begins by restricting the source from the highest level of refinement to the

coarsest level on line 1-3 (see figures 4.10 - 4.12 for illustrations). Since the source is

initially only defined on the composite mesh, when the level meshes were created the source

exists only on leaf cells. Restriction makes sure that the source exists on all cells on every

level mesh. On line 5, Poisson’s equation is solved, either with the FFT method (on the

coarsest level) or with the matrix inversion method (on other levels). The prolongation

of the potential on line 9 makes sure that when line 5 is executed on the next iteration,

there is already an initial guess (preconditioner) for the matrix inversion method. The loop

block on line 11-14 computes the residual on all the level meshes that the main loop block

starting on line 4 has gone through so far. Line 12 computes the residual on all the leaf

cells on M j, while line 13 guarantees that the residual on cells that are parents on M j

is also defined. For j = i at the first iteration of the loop, this comes from the residual

previously computed on line 10. On the leaf cells of the coarsest level mesh, we set the

residual to zero by definition of our solution method. This restriction of the residual from

the higher level of refinement to the coarsest level in a sense propagates the knowledge of

better solution due to better resolution at the higher refinement level back to the coarsest

level. This information is used later to compute the correction so that the solution on the

coarser level, initially computed with the resolution available only on that level mesh, also

benefits from the higher resolution that is available.

The iteration block on lines 15-23 solves for the corrections on every level mesh up to

the level currently being worked on by the main loop. The corrections are added to the

already solved potentials on every level mesh. Either the correction C(x) or the potential

Φ(x) is then prolongated depending whether or not we are at the last iteration of the

loop. The prolongation of the correction gives the matrix inversion scheme to solve for

the correction on line 16 a good initial guess. The prolongation of the potential gives the
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Algorithm 4.1 Multigrid Poisson Solver
1: for i = (lmax−1) to lmin do
2: Restrict Si+1(x) to Si(x)
3: end for
4: for i = lmin to lmax do
5: Solve ∇2Φi(x) = Si(x) obtaining Φ̃i

6: if i == lmax then
7: return
8: end if
9: Prolong Φi(x) to Φi+1(x)

10: Compute the residual Ri+1(x)
11: for j = i to lmin do
12: Compute the residual R j(x)
13: Restrict R j+1(x) to R j(x)
14: end for
15: for j = lmin to i do
16: Solve ∇2C j(x) = R j(x) obtaining C j(x)
17: Add correction: Φ̃ j(x) = Φ̃ j(x)+C j(x)
18: if j < i then
19: Prolong C j(x) to C j+1(x)
20: else
21: Prolong Φ j(x) to Φ j+1(x)
22: end if
23: end for
24: end for
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matrix inversion scheme at the next loop iteration of the main loop on line 5 a good initial

guess. By the time the last iteration of the main loop block (line 4-24) is reached, the

potentials of every level mesh have been corrected multiple times utilizing all the available

information of the sources at the higher level of refinement. The execution of line 21 before

the last iteration of the main loop makes sure that there is already a very good initial guess

for the potential when line 5 is executed at the very last iteration, that is, on the finest level

mesh. We expect the residual to be the error tolerance that we specify for the inversion

scheme in PETSc, and that the iteration for the matrix inversion converge very quickly.

Line 7 ensures that we exit this routine.

By the time the algorithm in listing 4.1 exits, every level mesh has the potential as

the solution to Poisson’s equation. To map this back to the composite mesh, we simply

replicate the potential found on every leaf cells on every level mesh to the composite mesh.

This completes the algorithm to solve for Poisson’s equation on mesh with refinements.

4.3.3 Numerical Example

To test our multigrid algorithm, we calculate the gravitational potential of a spherical

uniform mass on a mesh with four levels of refinements distributed over eight processes.

This problem was previously discussed on §3.4.1 for aa unigrid. Here we set the radius of

the sphere to R = 0.5 and mass density to ρ = 1. The potential and the relative error of the

potential as compared to the analytical solution on the composite mesh are shown in figure

4.13. Figure 4.14 shows the gravitational potential on each level mesh. The coarsest level

mesh is covered by 163 over the entire computational domain. We see that the maximum

refinement happens on the surface of the sphere to try to resolve the mass density cliff. The

relative error distribution resembles the one previously seen on §3.4.1, with the finest level

of refinement here at half the resolution.
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Figure 4.9: The composite mesh of a spherical uniform mass problem with five levels
of refinement distributed over 64 processes. The colors indicate the different processes
responsible for the cells. The top panel shows the whole mesh in three-dimensional
perpective; the bottom panel shows a two-dimensional slice of of the mesh across an xy-
plane.
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Figure 4.10: The coarsest level (level 1) of the level mesh. The top panel shows the mesh
in three-dimensional perspective; the bottom panel shows a two-dimensional slice of of the
mesh across an xy-plane. On this level mesh, the cells covers the entire computation and
forms the uniform mesh. Solution of Poisson’s equation on this level mesh can therefore
be obtained using the FFT method.
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Figure 4.11: Level 2 of the level mesh. The top panel shows the mesh in three-dimensional
perspective; the bottom panel shows a two-dimensional slice of of the mesh across an xy-
plane. The proper cells are shown with solid line. The cells with dotted lines are the
exterior cells that form the boundary around the proper cells. Mass density is plotted
as a volume plot. The variations in density are caused by restricted values from higher-
resolution level mesh.
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Figure 4.12: Level 3 of the level mesh. The top panel shows the mesh in three-dimensional
perspective; the bottom panel shows a two-dimensional slice of of the mesh across an xy-
plane. As shown in previous figure, cells form an island that does not necessarily cover
the entire computational domain. Only the proper cells are shown here. Mass density is
plotted as a volume plot. The variations in density are caused by restricted values from
higher resolution level mesh.
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(a) (b)

Figure 4.13: Gravitational potential of spherical uniform mass mesh with refinements (left),
and the relative error as compared to the analytical solution (right). The plots are a slice
through the three-dimensional mesh. On each plot the composite mesh is shown. The black
contour line represents the surface of the sphere at radius R = 0.5.

4.4 Conclusion and Outlook

In this chapter we have described the principle techniques for AMR in GenASiS. Further

code developments are still necessary to make AMR a mature feature of the code. Missing

features of the AMR includes mesh coarsening, a scheme to include the evolution of

magnetic fields with AMR, and the coupling of the hydrodynamics and Poisson’s solver

for simulations involving self-gravity. All of these are still currently under development.

The scalability of the current AMR scheme is also an area under investigation. Because

redistribution of cells is costly, it may be more advantageous to continue the simulation

with some load-imbalance until certain threshold, at which point redistribution is triggered.

The technique to do this is still being developed. The thresholds to know how much load-

imbalance can be tolerated may be hardware dependent, and a way to quantitatively and

systematically determine that needs to be investigated.

In the current version, the evolution of the fluid is done on the composite mesh with the

timestep being limited by the CFL condition due to the highest resolution cells. Meanwhile,

our multigrid scheme necessitates the creation of level meshes, which are then discarded
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(a) (b)

(c)

Figure 4.14: Gravitational potential of a spherical uniform mass distribution on level mesh
computed with the multigrid algorithm. Levels one to four of the refinements are shown
on the panel from left to right, top to bottom. The plots are a slice through the three-
dimensional mesh.
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when the solution of the Poisson’s equation is obtained and mapped to the composite mesh.

This mismatch is costly due to the extra transient memory needed to create the level meshes.

Furthermore, during the development of the multigrid scheme, we serendipitously observed

that the use of level meshes has properties that may simplify a lot of our constructions for

the evolution of the fluid dynamics. In the language of object-oriented programming, we

may consider a level mesh as an object on which a level by level evolution of the fluid

may be done. Methods and interfaces for each level may then be re-used on many level

meshes. Evolution across coarse-fine boundaries may also be treated using prolongations

and restrictions. Each level may also be evolved with different timestepping, sub-cycling

so that the coarser levels evolve with the largest timesteps as multiples of the timesteps of

the finer levels. This may yield an overall increase of efficiency. These reasonings motivate

us to investigate a modified scheme for the fluid dynamics to utilize level meshes. This line

of thinking therefore is currently being pursued to see if it yields not only a more scalable

AMR scheme, but also a reduction of code complexity.
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Chapter 5

Merger of Binary Neutron Stars

5.1 Introduction

A neutron star is one possible outcome of stellar evolution. After a massive star runs

out of fuel, it undergoes gravitational collapse and ejects its outer layers in a cataclysmic

explosion, a phenomenon known as a core-collapse supernova. Depending on the mass

of the progenitor, the remnant of this core-collapse supernova is either a neutron star or a

black hole. A neutron star is therefore a very compact and dense object.

Typical neutron stars have roughly 1 to 1.5 solar masses (M�) compressed into an

object of only about 20 to 10 km in radius. Most neutron stars were initially discovered as

solitary objects known as pulsars (rotating neutron stars emitting periodic radio pulses). It

was not until 1974 that a neutron star binary was discovered (two neutron stars in mutual

orbit) by Hulse and Taylor (1975), a discovery which led to a Nobel Prize. Since then,

additional discoveries of binary neutron stars in our galaxy have followed (Dewey et al.,

1985; Anderson et al., 1990; Wolszczan, 1991).

Binary neutron stars have a finite lifetime due to their decaying orbit. As the stars

orbit each other, their separation decreases and the two stars inspiral towards each other.

This orbital decay is believed to be caused by the emission of gravitational radiation, as

predicted by the theory of general relativity. Precise measurement of this orbital decay
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agrees with the prediction of general relativity (Taylor, 1994), indirectly confirming the

existence of gravitational waves. Efforts to detect gravitational waves directly have begun,

with large-scale gravitational detectors such as LIGO, VIRGO, and GEO-600 functioning

and coming online. Neutron star mergers are one of the prime targets for these detectors

(Abramovici et al., 1992; Bradaschia, 1990; Luck, 1997). However, theoretical waveforms

and templates are needed for these detectors to be able to extract gravitational wave

signals from background noise. Neutron star merger simulations and models provide such

templates.

In this chapter we show current GenASiS capabilities to do such simulation yielding

observables such as gravitational waveforms and spectra signatures. Here we present

results of a full three-dimensional simulation of neutron star merger. We also show the

tools we have developed to extract and analyze the physical observables: gravitational

waveforms and spectra. As in other previous work, we use a simple polytropic equation

of states to model the neutron stars. This simulation serves as a milestone in GenASiS

development towards a more physically realistic neutron star merger simulations.

5.2 Gravitational Wave Radiation

Widely separated neutron stars inspiral, driven primarily by the loss of energy and

momentum due to the gravitational wave emission. For nearly Newtonian sources,

gravitational radiation can be calculated using the quadrupole approximation (Misner et al.,

1973). Blanchet et al. (1990) introduced a formalism to include these effects in non-

relativistic hydrodynamics flow without magnetic fields by adding source terms (in addition

to the self-gravitation source term) to the hydrodynamics equations. We follow the specific

implementation by Shibata et al. (1992) and Ruffert et al. (1996), and modify equations 2.1
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- 2.3 to become:

∂ρ

∂ t
+

∂

∂xi

(
ρvi) = 0, (5.1)

∂S j

∂ t
+

∂

∂xi

(
ρw jvi + pδ

i j) = −ρ
∂Φ

∂x j −ρ
∂Ψ

∂x j , (5.2)

∂E
∂ t

+
∂

∂xi

([
e+ p+

1
2

ρw jw j
]

vi
)

= −ρvi ∂Φ

∂xi +W. (5.3)

The symbols have the same meaning as before in §2.1.1 , except for several new variables

introduced here. We also redefine the conserved variables S and E in term of the new

dynamic velocity w j as:

S j = ρw j, (5.4)

E = e+
1
2

ρw jw j, (5.5)

where w j is given by the following relation:

v j = w j +
4
5

G
c5

...
Di jwi. (5.6)

Ψ and W are the back-reaction potential and the energy source term due to the gravitational

waves, respectively. They are given by

Ψ =
2
5

G
c5

(
R−

...
Di jxi ∂Φ

∂x j

)
, (5.7)

W = −ρvi ∂Ψ

∂xi +
4
5

G
c5

...
Di jv j

(
ρ

∂Φ

∂xi +
∂ p
∂xi

)
, (5.8)

where
...
Di j is the third time derivative of the quadrupole moment:

...
Di j = STF

[
2
∫

dV
(

2p
∂vi

∂x j +
∂Φ

∂x j

(
xi

∂ρvk

∂xk −2ρvi

)
−ρxi

∂ Φ̇

∂x j

)]
. (5.9)
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The notation STF means symmetric and trace free, which is defined as

STF
[
χi j
]
≡ 1

2
χi j +

1
2

χ ji−
1
3

δi jχkk. (5.10)

The gravitational potential, its time derivative, and R are described by Poisson equations:

∇
2
Φ = 4πGρ, (5.11)

∇
2
Φ̇ = −4πG

∂ρvi

∂xi , (5.12)

∇
2R = 4πG

...
Di jx j ∂ρ

∂xi . (5.13)

The conserved MHD variables are evolved as usual with the scheme described in

chapter 2. After the primitive variables are recovered from the conserved ones at the

end of each timestep, the kinematic velocities vi are computed using equation 5.6. The

source terms are updated in operator-splitting manner, and the Poisson’s equation for the

potentials (equations. 5.11-5.13) are solved using the scheme described in chapter 3. All

spatial derivatives appearing in the above equations are computed using standard centered

differences on the mesh.

The physical observables of interest are the waveforms and amplitudes of the grav-

itational wave radiation. By quadrupole approximations, the amplitudes for the two

polarizations for an observer located at distance r perpendicular to the orbital plane are

given by:

h+ =
G
c4

1
r

(
D̈xx− D̈yy

)
, (5.14)

h× =
G
c4

2
r

D̈xy, (5.15)

where the second time derivative of the quadrupole moment is computed from

D̈i j = STF
[

2
∫

dV ρ

(
viv j− xi

∂Φ

∂x j

)]
. (5.16)
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The gravitational wave luminosity may be computed from the standard definition in the

quadrupole formula

L =
1
5

G
c2

...
Di j

...
Di j. (5.17)

This is a non-average luminosity since averaging is not well-defined during the final phase

of the merger when the the orbit decays and gets further from circular.

A useful comparison is to consider the analytical expressions for inspiral of a point-

mass on an xy-plane due to the gravitational wave emission given by Misner et al. (1973).

The separation of two point-mass objects with masses m1 and m2, total mass M = m1 +m2,

and reduced mass µ = m1m2/M as function of time is:

a(t) = a0

(
1− t

τ0

)1/4

, (5.18)

where a0 is the initial separation at t = 0 and τ0 is the inspiral time (i.e. the time to reach

a = 0) given by

τ0 =
5

256
c5

G3
a0

4

µM 2 . (5.19)

Lai (1994) gives the emitted gravitational waves as:

h+ =
1
r

(
D̈p

xx− D̈p
yy
)
, (5.20)

h× =
2
r

D̈p
xy cosθ(t), (5.21)

where D̈p
i j is the second time derivative of the quadrupole moment for point mass, given

by:

D̈p
xx = −2G

µM

a
cos(θ(t)−θ0),

D̈p
yy = +2G

µM

a
cos(θ(t)−θ0),

D̈p
xy = −2G

µM

a
sin(θ(t)−θ0), (5.22)
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for observer perpendicular to the orbital plane. The two waveform polarizations then may

be reduced to

h+ = −4
r
M µ

a(t)
cos(Φ(t)−Φ0), (5.23)

h× = −4
r
M µ

a(t)
sin(Φ(t)−Φ0), (5.24)

where Φ(t), the angle of the axis connecting the two point masses relative to the x-axis as

function of time, is given by:

Φ(t) =
16
5

cτ0

(
GM
c2a3

0

)1/2
[

1−
(

a(t)
a0

)5/2
]

+Φ0. (5.25)

For point masses initially on the x-axis, we set Φ0 = Φ(t = 0) = 0.

5.3 Simulation Setup

In this simulation we consider the merger of two 1.4M� neutron stars with initial separation

of a0 = 40 km in the xy-plane. The stars are centered on x =±20km. The neutron stars are

modeled by “cold“ γ = 2 polytropes with initial profile produced by the method in §3.4.5.

This gives us a profile with central density ρc ' 2.18×1015 g cm−3 and radius rs = 10 km.

The initial separation was chosen to be wide enough so that tidal interaction between

stars is negligible. At this separation (a� rs) the inspiral is mainly driven by the loss of

energy and angular momentum due to the gravitational wave emissions. Initially the stars

should follow the trajectory of point-mass inspiral. If we neglect the energy and angular

momentum loss, the initial orbit is then the circular Keplerian orbit. Therefore we give the

stars initial velocities of point-mass circular orbits:

vy =±
√

Gm
2a0

, (5.26)

where m is the mass of the star.
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We set a low mass and internal energy density atmosphere in the computational domain

of about 5 orders of magnitude lower than the star central density initially. During the

simulation we also set the mass density floor to 1× 105 g cm−3. For cells with mass

density lower than three times the mass density floor, we set the velocities to zero artificially

to avoid problems with simulation timestep due to spurious high-velocity, low-density

material. We use “ratcheting” boundary conditions which allow material to freely flow

out of the computational domain but prevent matter to come onto the grid from outside. In

the simulation run, the Courant number is set to C = 0.3 and the slope limiter parameter is

θ = 1.9. Our computational domain boundary is at ±40 km in all dimensions.

During the simulation, we only compute the quantity D̈i j rather than the waveforms,

and write it to disk. The gravitational waves are then reconstructed in post-processing

manner. Since disk activities are computationally costly, we only do enough sampling to

capture a maximum wave frequency of 1× 104 Hz. (For comparison, the frequency band

of ground-based detectors is around f ∼ 10− 10000 Hz (Abramovici et al., 1992)). This

means that rather than writing D̈i j to disk every simulation timestep, we only write it every

1/(2×104) seconds (the Nyquist rate) in simulation time. During the evolution, if the next

timestep is greater than required for the sampling, we reduce the timestep appropriately to

hit the desired time.

We first show that our assumptions of the initial conditions are valid (i.e. negligible tidal

interaction and point-mass approximation) by running a simulation with the back-reaction

terms, energy and momentum loss terms due to the gravitational waves emission, turned

off. This is done by removing the second term of the right hand side of equations 5.2 and

5.3. Without these terms, the stars should maintain circular orbits on a time scale greater

than the dynamical time tD for each star, where

tD =
(

r3
s

Gm

)1/2

= 8.68×10−5 s. (5.27)

This also shows that, with sufficient resolution, numerical viscosity in our code is low

enough to be negligible.
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Figure 5.1 shows the gravitational waves of this setup in simulation with 1283 cells

resolution. In this simulation, the stars finally coalesce around tD = 160. The is caused

by the numerical viscosity due to insufficient resolution. Increasing the resolution to 2563

total cells removes this problem, as shown in figure 5.2. The circular orbit remains stable up

to tD = 200. The conservation of energy and angular momentum are also better conserved

with this resolution (figure 5.3). These tests set the minimum resolution to use in the merger

simulation.

5.4 Merger and Observables

The evolution of the inspiraling and merging of the neutron stars are shown as snapshots

in figures 5.4, 5.5, and 5.6. Slices of mass density in xy-plane are plotted in all of the

panels, together with a semi-transparent contour plot at ρ = 1×1012 gm cm−3. A threshold

is applied in the visualization to exclude the plotting of lower density. Minimum and

maximum value of the density are shown below the legend bar on each panel.

The inspiral phase of the evolution is depicted in figure 5.4. The first panel of the

figure shows the initial condition, when the stars are still in quasi-circular orbit, in counter-

clockwise direction. Here we see the final two orbits that last about 4.6 ms before the stars

start to touch each other. In this inspiral phase, initially the back-reaction terms due to the

gravitational wave emissions dominate in driving the inspiraling as the system loses angular

momentum and energy (see figure 5.8). As the stars get closer to each other, their tidal

bulges grow and the tidal effects start to take over. The stars follow closely to the point-

mass approximation initially, but diverge from point-mass approximation as tidal effect

starts to take over (e.g. see figure 5.7).

Figure 5.5 shows the merger phase of the evolution. The merger phase happens fairly

rapidly, lasting only about 1.2 ms. The first panel in the figure shows that the stars

have already touched each other and formed a bar-like structure. Some mass and angular

momentum is lost through the spiral arms that are formed due to the gravitational torque.

As the central objects coalesce to a single massive object, the arms finally grow to form a
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Figure 5.1: The two polarizations of gravitational waves of a binary neutron stars
simulation without back-reaction terms, with mesh resolution of 1283 cells. The dotted
lines show the gravitational waves for inspiraling point-masses.
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Figure 5.2: The two polarizations of gravitational waves of binary neutron stars simulation
without back-reaction terms with a mesh resolution of 2563 cells. The dotted lines show
the gravitational waves for inspiraling point-masses.
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Figure 5.3: Conservation of angular momentum (left axis) and energy (right axis) plotted
as relative difference to their initial value of simulation without back-reaction terms for
1283 and 2563 cells resolution.
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(a) (b)

(c) (d)

Figure 5.4: The last several orbits of the inspiraling phase of the binary neutron stars
starting from the initial condition of the simulation as shown in panel (a). A mass density
slice in xy-plane through the center of each star is plotted here, together with a semi-
transparent contour plot of mass density at ρ = 1× 1012 gm cm−3. A visualization
threshold operator is applied to exclude the plotting of lower value, although the minimum
value on the grid is shown on the legend. The stars are orbiting in the counter-clockwise
direction as viewed looking down from positive z-direction.
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(a) (b)

(c) (d)

Figure 5.5: The merger phase of the neutron stars with the same plots as in figure 5.4. Panel
(a) shows the plot after the initial contact of the two stars, followed by the coalescence of
the stars within 1.2 ms, after which the two initial masses almost fully merge, as shown in
panel (d).
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(a) (b)

(c) (d)

Figure 5.6: The final / ring-down phase of the neutron stars merger with the same plots as
in figure 5.6. Here we see that a large rotating disk around a central object has formed from
the merger.
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Figure 5.7: The two polarizations of gravitational waves for the merger simulation. The
dotted lines show the gravitational waves of inspiralling point-mass.
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Figure 5.8: Angular momentum (left axis) and energy (right axis) plotted as relative
difference to their initial value in the merger simulation.
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disk around it. At the end of this phase (last panel in figure 5.5), the two stars are barely

distinguishable.

The merger phase is followed by a “ring down” phase, shown in figure 5.6, as the spiral

arms are fully grown and have formed a massive disk around the central object. The disk

becomes increasingly axisymmetric, halting the production of the gravitational waves. No

more loss of angular momentum and energy happens in this phase. We see in figure 5.8 that

the system conserves its energy and momentum for t > 10 ms. Some differential rotation

may still occur in the disk. It is likely that in this phase the central object collapses to form

a black hole (Lattimer, 2000), although our simulation cannot show that due to it being

Newtonian. How much mass can be supported and how long it takes before the central

object collapses to form a black hole depends on the equation of state of the neutron stars,

and is still open for investigation (Cook et al., 1994; Lattimer, 2000; Morrison et al., 2004).

Figure 5.7 shows the two gravitational waves polarizations produced by the system

starting from the initial conditions of the simulation to the ring down phase. As previously

mentioned, we see that the waves track the waves produced by a point-mass analytical

calculation initially, but quickly goes out of phase as tidal effects start to dominate in the

late inspiral phase. This causes the stars to spiral faster than the point-mass counterpart,

manifested in the increase of frequency and amplitude of the waveforms starting around

tD = 60 = 5.2 ms. The waves reach the maximum at around tD = 85, and quickly decreases

as the object formed by the coalescence grows axisymmetric. By tD = 160, the gravitational

waves production practically ceases.

It is also instructive to look at the energy emitted per unit frequency interval dE/d f for

the gravitational waves. The spectrum data contains rich information and signatures that

are not immediately obvious from the waveforms. Thorne (1989) gives the expression for

dE/d f in the form:

dE
d f

=
c3

G
π

2
4πr2 f 2〈|h̃+( f )|2 + |h̃×( f )|2〉, (5.28)
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where the angle brackets denotes average over all sources, and h̃( f ) is the Fourier transform

of the function h(t). Zhuge et al. (1994) shows that

〈|h̃+( f )|2 + |h̃×( f )|2〉= 〈|h̃+( f )|2〉+ 〈|h̃×( f )|2〉, (5.29)

where

c8

G2 r2〈|h̃+( f )|2〉 =
4
15
|˜̈Dxx− ˜̈Dzz|2 +

4
15
|˜̈Dyy− ˜̈Dzz|2 +

1
10
|˜̈Dxx− ˜̈Dyy|2

+
14
15
|˜̈Dxy|2 +

4
15
|˜̈Dxz|2 +

4
15
|˜̈Dyz|2, (5.30)

c8

G2 r2〈|h̃×( f )|2〉 =
1
6
|˜̈Dxx− ˜̈Dyy|2 +

2
3
|˜̈Dxy|2 +

4
3
|˜̈Dxz|2 +

4
3
|˜̈Dyz|2. (5.31)

The energy spectrum for point-mass inspiral is given by Cutler and Flanagan (1994):

dE p

d f
=

π

3
GµM

c

(
c3

πGM f

)1/3

. (5.32)

We have computed the spectrum dE/d f for our simulation using equation 5.28. We

prepend the simulation data with D̈p
i j from point-mass formula (equation 5.22) before

calculating the Fourier transform. By doing so, we have a long region of the inspiral phase

in the frequency domain to ensure that we can see any cutoff frequency in our data. This

is valid since initially the evolution of the simulation tracks the inspiral of the point mass

(e.g. see figure 5.7).

Figure 5.9 shows the gravitational wave spectra dE/d f with the solid line representing

the spectrum from the simulation preprended with point-mass data in the low-frequency

inspiral regime. The dotted line shows the spectrum of the point-mass inspiral calculated

from the analytical formula. We can identify some features of this plot. As f increases,

we see that dE/d f first drops below the point-mass inspiral value at f ∼ 800 Hz, and then

again reaches a local minimum at f ∼ 1500 Hz. We identify this as the onset of the regime

where the tidal effect stars to dominate, which causes the stars to coalesce faster than the

point-mass inspiral. This is followed by a peak at f ∼ 2200 Hz and secondary peaks at
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Figure 5.9: Gravitational wave spectrum dE/d f . Solid line represent the spectrum from
the simulation pre-prended with point-mass data in the low-frequency inspiral regime. The
dotted line shows the spectrum of the point-mass inspiral calculated from the analytical
formula.
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f ∼ 3200 Hz which we associate with the fairly rapid merger phase. The cutoff in dE/d f

happens rapidly as the gravitational waves production ceases.

5.5 Conclusion

In this chapter we have carried out a fully three-dimensional simulation of neutron star

merger with GenASiS. Although our model is still fairly simple, this simulation serves

as a milestone in GenASiS development toward a more realistic merger simulation. We

have shown that we can extract physical observables such as gravitational waveforms

and spectra. These kinds of templates is necessary for ground-based gravitational wave

detectors data analysis. We have also shown that the spectra from such an event lies on

the frequency range of f 10−10000 Hz, the range covered by broadband detectors such as

LIGO and VIRGO.

The relationship between mass and radius of neutron stars is determined by the nuclear

equation of state. As such, knowledge of these relationships provide constraints on the

form of the nuclear equation of state. In this simulation, we have used a simple model

of polytropes for the equation of state of the neutron star. A parameterized studies of the

equation of state covering the parameter spaces of mass and radius and their effects on the

gravitational waveforms signature is necessary to provide a catalog of observables. In the

event of a physical observation then, a matching in the catalog may gives us knowledge

of the neutron star quantities such radius or mass, and thereby a better constraint on the

equation of state (Lindblom, 1992; Cutler et al., 1993; Cutler and Flanagan, 1994). Such

simulations using the Langragian smooth particle hydrodynamics (SPH) have been carried

out by Zhuge et al. (1996). Our simulations have shown that we have the necessary tools

and techniques to do a similar and more thorough study with Eulerian formalism even

just using the current version of GenASiS (see chapter 1 for the motivation of Eulerian

formalism). Such parameter studies will be the subject of future work.
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Chapter 6

Generation of Magnetic Fields by the

Stationary Accretion Shock Instability

In this chapter we explore the amplification of magnetic fields in the post-bounce

environment of core-collapse supernova. These simulations demonstrate a suitable

scientific application for GenASiS.

6.1 Introduction

Despite over four decades of intensive investigations, the details of the mechanism behind

core-collapse supernovae remains elusive. In the modern paradigm for core-collapse

supernovae, there is a phase of the stalled shock after the core bounce, followed by the

revival of the shock that finally results in an explosion that disrupts the outer layers of

the star, leaving behind a new neutron star. The details of the stalled shock revival are at

the heart of the core-collapse supernova mechanism, and therefore subject to considerable

research efforts. Recent studies have shown that the stalled shock itself is unstable to

non-radial perturbation (Blondin et al., 2003; Blondin and Mezzacappa, 2006), and this

instability, dubbed the “stationary accretion shock instability” (SASI) may play critical

role in reviving the stalled shock that leads to explosions. Recent multiphysics supernova
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simulations have confirmed the existence of the SASI (Bruenn et al., 2006; Buras et al.,

2006; Burrows et al., 2006; Scheck et al., 2008; Marek and Janka, 2009). Furthermore, the

importance of SASI has also been noted for its role in improving the conditions for neutrino

energy deposition in the post-shock gas (Scheck et al., 2008; Marek and Janka, 2009), and

in explaining the velocity distribution of young pulsars (Scheck et al., 2006).

Although the role of magnetic fields in supernova explosion mechanisms remains

unclear, recent interest in its relevance in the context of core-collapse supernova has

significantly increased. The discovery of magnetars (Duncan and Thompson, 1992)—

neutron stars with very strong magnetic field (in the order of 1014–1015 G)—, the

theoretical discovery of magnetorotational instability (MRI) (Balbus and Hawley, 1991),

and the observation of collimated jets in supernovae associated with gamma-ray bursts

(Woosley and Bloom, 2006) help sparks this interest. The generally observed asphericity

of core-collapse supernova explosions (Wang et al., 2001b) was also long thought to be

caused by a magnetic field with rotation, although with the recent discovery of SASI this

assumption may be partially challenged. Recent works therefore have included magnetic

fields in the modeling of core-collapse supernovae (Kotake et al., 2004; Ardeljan et al.,

2005; Obergaulinger et al., 2006; Thompson et al., 2005; Shibata et al., 2006b; Burrows

et al., 2007; Cerdá-Durán et al., 2007; Endeve et al., 2007; Suzuki et al., 2008; Mikami

et al., 2008; Takiwaki et al., 2009).

The magnetohydrodynamics studies of core-collapse supernovae mentioned above rely

on the progenitor having rapid rotation as the necessary ingredient for magnetic field

amplification during collapse and post-bounce. The rotation acts as both energy reservoir

and mechanical agent for the amplification via compression during collapse and winding

of the field during the post-bounce phase. Strong magnetic fields, orders of magnitude

stronger than the initial field of the progenitor star (Heger et al., 2005), are necessary if

the magnetic field is to have any significant effect on the ensuing dynamics, hence the

amplification. Most progenitors however are expected to have only modest initial rotation

and initial field strength. This is one of the reasons that magnetohydrodynamics had been

largely ignored for the modeling of core-collapse supernovae in the past.
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The recent discovery of SASI and its effect in generating phenomena previously

attributed to the rotation of progenitor, particularly the asphericity of the explosion and

pulsar spin (Blondin and Mezzacappa, 2007), raise the question whether it can also act

as an agent of magnetic field amplification in the absence of initial rotation. Many of

the past supernova simulations that include magnetic fields have either been done in

only a single quadrant for the computational domain or only followed the post-bounce

evolution up to a few tens of milliseconds. Both of these constraints necessarily exclude

the development of SASI. Most studies have also been carried out with axial symmetry

imposed, which excludes the development of the spiral mode of SASI (Blondin and

Mezzacappa, 2007). Therefore in our study, we extend the models of Blondin et al. (2003)

and Blondin and Mezzacappa (2007) to include initially weak magnetic field, comparable

in strength to the progenitor star. We perturb the initial condition and follow the evolution

of magnetic fields as SASI develops. Our results show that in the three-dimensional (3D)

models, the flows are eventually dominated by the m = 1 (spiral) mode that amplify the

magnetic field via flux tube stretching. Although the amplification of magnetic fields in our

simulation is ultimately limited by numerical resistivity due to finite spatial resolution, our

simulations suggest that SASI-generated magnetic fields are unlikely to be dynamically

important for the dynamics of core-collapse supernovae. Nevertheless, our simulations

suggest a mechanism for the magnetization of proto-neutron star (PNS) in absence of initial

progenitor rotation. What follows is a summary of the study we previously published in

Endeve et al. (2010).

6.2 Model and Numerical Setup

6.2.1 Initial Conditions

We set up our models in an idealized post-bounce supernova environment. The magnetized

fluid is described by the ideal magnetohydrodynamics of equations 2.33 – 2.37, and

modified to include gravity as source term in the conservation of momentum and energy

150



equations as:

∂D
∂ t

+
∂

∂xi

(
ρvi) = 0, (6.1)

∂S j

∂ t
+

∂

∂xi

(
ρv jvi + pδ

i j−B jBi) = −ρ
∂Φ

∂x j , (6.2)

∂E
∂ t

+
∂

∂xi

([
e+ p+

1
2

ρv jv j +
1
2

B jB j
]

vi−Bi(B ·v)
)

= −ρvi ∂Φ

∂xi , (6.3)

∂B
∂ t

= ∇× (v×B), (6.4)

∇ ·B = 0. (6.5)

The variables have the same meaning as before (see § 2.1.3), with the gravitational potential

Φ given by the point-mass formula Φ = −GM/r, where G is Newton’s gravitational

constant, M is the mass of the central object, and r is the radial distance from the center

of the star. We use a polytropic equation of state with adiabatic index Γ = 4/3. We also

decompose the total energy E as E = eint +ekin +emag where eint = p/(Γ−1) is the internal

energy density, ekin = (ρv · v)/2 is the kinetic energy density, and emag = (B ·B)/2 is the

magnetic energy density (also often referred as the magnetic pressure).

We follow a similar setup of a post-bounce stalled supernova shock as in Blondin

et al. (2003) and Blondin and Mezzacappa (2007). The mass of the central object is

set to M = 1.2 M�, and is set to be constant throughout the simulation. A steady-state,

spherically symmetric accretion shock is placed at r = Rsh = 200 km with accretion rate set

to 0.36 M� s−1. This accretion rate is maintained throughout the simulation. Although this

accretion rate is large enough to increase the mass of the central object over the timescales

we consider, we artificially set the rate of mass change of the central object to ∂M/∂ t = 0

so that a steady state solution of unperturbed initial condition may be constructed and

compare against for this study. Ahead of the shock, matter falls into the shock with free-fall

speed. We use highly supersonic Mach number of 300 to set the pressure in this pre-shock

gas. The hydrodynamic state just inside the shock is then determined from the Rankine-

Hugoniot jump condition (Courant and Friedrichs, 1977). The structure of the fluid just

inside the shock down to the inner boundary of r = RPNS = 40 km is obtained by solving
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the Bernoulli equation. A “cutout” boundary if used as inner boundary of our grid and

may loosely be interpreted as the surface of the proto-neutron star (PNS). Fluid is allowed

to flow through the cutout inner boundary in a manner that in our experience maintains

the steady state solution in simulations without non-radial perturbation: the fluid velocity

is held fixed to its initial value just inside the inner boundary; the power laws for mass

density (ρ ∝ r−3) and pressure (P ∝ r−4) obtained from the Bernoulli equation are used to

dynamically interpolate values from cells just outside the inner boundary to ghost cells just

inside the boundary.

The strength and topology of the magnetic field in a supernova progenitor is not

known with confidence. For our models, we simply consider a purely radial initial field.

This choice is consistent with steady-state initial condition. Also collapse tends to drag

any initial higher-order multipole moments of the field into a more radial configuration.

Consider an initial poloidal field of about 106 G for the progenitor (Heger et al., 2005).

During the collapse the mass density increase about 5 orders of magnitude, and the

magnetic field strength increases roughly as B ∝ ρ2/3, since the field is “frozen-in” to

the fluid. This gives a field strength of roughly a few times 109 G in the collapse core.

In our base model we set B0 = 1012 G, where B0 is the field strength at r = RPNS. This

initial field is not expected to have any effect on the early development of the development

of SASI since both the ratio of the magnetic pressure to the fluid pressure and the ratio of

the magnetic energy density to the kinetic energy density are small everywhere inside the

shock. The value of the former is emag/P < 2×10−11, and the latter is emag/ekin < 2×10−8.

We have also varied B0 in some of our models.

The magnetic field is added to the fluid in a “split monopole” fashion with B = Brer

with B = sign(cosθ)×B0(RPNS/r)2, where θ is the polar angle in spherical coordinate

system. The magnetic field has positive and negative polarity in the northern and southern

hemisphere respectively, implying existence of a thin current sheet in the equatorial plane.

At the outer boundary the magnetic field is held constant throughout the simulations.

In one of our models, we add rotation about the z-axis to the initial condition by

setting the azimuthal velocity to vφ = l sinθ/r where l is the (constant) specific angular
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momentum. This method of initializing the rotation is similar to the one used by Iwakami

et al. (2009), except that we include rotation from the onset of the simulation rather than

introduce it in the nonlinear evolution. Since our inner boundary is spherical, this study is

limited to include only models with rotation rates that do not result in significant deviation

from spherical symmetry. Specifically, in the rotating model we set the specific angular

momentum to l = 1.5×1015 cm2 s−1. This is a relatively slow rotation, but consistent with

the stellar evolution calculation by Heger et al. (2005).

6.2.2 Steady-state Standing Accretion Shock

Before we begin the study of SASI with magnetic field, we needed to demonstrate that

our code is able to maintain the steady-state solution of the standing accretion shock when

there is no non-radial perturbation of the initial conditions. We choose a resolution that

is high enough to give acceptable results for maintaining the steady-state solution. From

experiments, we found this to be a cell width of ∆l ≈ 1.56 km. Thus, this is the resolution

we use as our base resolution in this study. We will present also results where we vary

the resolution. At the late times in the calculations however, we do not find convergence

because highly nonlinear flows have structures on all grid scales, although global values

(e.g. total kinetic energy inside the shock) are qualitatively the same for models with

various resolutions.

With our base resolution of ∆l ≈ 1.56 km, we evolve the steady-state solution to the

standing accretion shock up to the timescale comparable to the time between bounce and

shock revival in a core-collapse supernova. This duration is about 1 second. This will show

that our code is able to integrate the MHD equation correctly on this timescale. Due to

numerical errors and slight mismatch of the analytical solution and the discretization, we

expect transients from the analytical initial condition before the system finally settles to a

new configuration that matches the steady-state solution for the discretized MHD equation.

The code’s ability to maintain the steady-state solution is illustrated in figure 6.1. In

this figure, total values on the grid, obtained by volume integrals over the computational

153



domain, of internal energy density eint, kinetic energy density ekin, magnetic energy density

emag, and gravitational energy density egrav = ρΦ are plotted as Eint, Ekin, Emag, and Egrav,

respectively. The accumulated total magneto-fluid energy flux density Ffluid = E + p + B ·

B/2, and the gravitational energy flux density Fgrav = ρΦv that have been lost from the grid

through the inner boundary and added to the grid from the inflow of the outer boundary,

are also tracked. These are plotted as F−
fluid and F−

grav for the total magneto-fluid energy

and gravitational energy lost through the inner boundary, and F+
fluid and F+

grav added to the

grid due to the inflow outer boundary.

The initial transients period can be seen in figure 6.1 from time t = 0 to t = 200 ms.

During this period the shock radius increases from Rsh = 200 km to Rsh ≈ 207 km, where

it settles to the configuration. The expansion of the shock radius increases the shocked

volume, which correspond to a small net increase in Ekin, as seen in the figure. Beyond

this initial transients period, the energies in the computational domain remain constant.

The sum of all the curves in figure 6.1, plotted as thick solid black line, is constant within

numerical precision. This shows the code’s ability to maintain the steady-state solution and

correctly integrate the MHD equations on the timescale of interest.

6.3 Magnetic Field Amplification

6.3.1 Magnetic Field Evolution in SASI

In this section we describe and explain the amplification of magnetic field due to SASI-

induced flows in our three-dimensional models.

The development of SASI needs to be initialized by a non-radial perturbation. In the

axisymmetric case, Blondin et al. (2003) showed that the qualitative features of SASI

evolution do not depends on the details of the perturbation. We confirm this result. In

the three-dimensional case, eventually SASI is dominated by the m = 1 (spiral) mode,

regardless of the perturbation, although the details of the early evolution may vary.
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Figure 6.1: Conservation of energy for steady-state standing accretion shock. Total values
on the grid of internal energy (black solid line), kinetic energy (black dotted line), magnetic
energy (black dash-dot line) and gravitational energy are plotted over time. The energy unit
is in Bethe, with 1 B = 1051 erg. The magneto-fluid energy and gravitational energy lost
from the grid through the inner boundary are also plotted as red and blue dashed lines,
respectively, while the magneto-fluid and gravitational energy coming into the grid due to
inflow from the outer boundary are plotted as red and blue dot-dashed lines, respectively.
The sum of all these are plotted as thick solid black line, showing conservation of energy
within numerical precision.

155



Table 6.1: Tabular overview of three-dimensional SASI models.

Model Name B0 [G] l [cm2 s−1] Perturbation Spatial Resolution [km]
3DB12Al 1×1012 0 axisymmetric 300/128
3DB12Am 1×1012 0 axisymmetric 300/192
3DB12Ah 1×1012 0 axisymmetric 300/256
3DB12Rm 1×1012 0 random 300/192
3DB12ΩRm 1×1012 1.5×1015 random 300/192
3DB10Rm 1×1010 0 random 300/192

In our simulations, we use two different perturbations to initial the SASI. The first

one, dubbed “axisymmetric” perturbation, is done by introducing two tori in the pre-shock

gas, one in the northern and one in the southern hemisphere, whose density is increased

by 20% compared to the non-perturbed steady-state flow. Axisymmetric perturbation may

favor the l = 1 sloshing mode of SASI. For comparison therefore, we also use “random

pressure” perturbation in our simulations, where a small amplitude (1%) random pressure

is introduced inside the shock to initiate SASI.

For our 3D models, we have chosen to use the initial magnetic field B0 = 1012 G for

most of our models. We also have one model with B0 = 1010 G for comparison. We also

vary the spatial resolution of our simulations to investigate the effect of resolution on the

magnetic field amplification. One of the models has an initial rotation with specific angular

momentum l = 1.5×1015 cm2 s−1 about the z-axis. Table 6.1 gives an overview of all our

models.

6.3.1.1 Reference Model with Axisymmetric Perturbation

We begin by exploring the evolution of magnetic field in model 3DB12Am as a reference

model. The axisymmetric perturbation in this model initiate the sloshing mode of the SASI

in the early state of the its development. Figure 6.2 provides an overview of the magnetic

field evolution of this model.

Plotted in figure 6.2 are the magnitude of the magnetic fields overlaid with density

contours at selected times. The axisymmetric perturbation initiate the sloshing mode in
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Figure 6.2: Snapshots showing the evolution and distribution of the magnitude of the
magnetic field in a slice through SASI model 3DB12Am. The times of the snapshots are
indicated in the upper left corner of each panel. The color scale gives the magnetic field
magnitude (in G). Note also that the sides of the top left panel are 100 km, while the other
panels are 200 km. The top two panels show a slice of the xz-plane through the origin, while
the two bottom panels show the evolution through a slicing plane whose normal vector is
parallel to the total angular momentum vector of the flow between the PNS and the shock
surface. Contour of constant density are plotted as black lines, starting with the innermost,
they denote ρ = 1010, 109, 3×108, and 6×107 g cm−3. The last contour is visible only on
the lower right panel.
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Figure 6.3: Evolution of magnetic and kinetic energies in a 3D model perturbed with the
axisymmetric perturbation (model 3DB12Am). In the left panel we plot the total magnetic
energy inside the shock Emag (solid, thick black line), the individual components Emag,x, Emag,y,
and Emag,z (dotted red, dashed green, and dash-dot blue lines, respectively). We have also
plotted the total magnetic energy inside the shock for a 2D axisymmetric model (model
2DB12Am; solid grey line). In the right panel we plot the evolution of the kinetic energy
inside the accretion shock: Total (solid black line), and the individual components Ekin,x
(dotted red line), Ekin,y (dashed greed line), and Ekin,z (dash-dot blue line).

the early time of the evolution, as shown in the upper left panel of this figure. The total

magnetic energy and kinetic energy inside the shock are plotted over time in figure 6.3 on

left and right panel, respectively. Several distinct stages can be identified in this simulation.

The evolution begins right after the perturbation has been applied to the initial

condition. Until about t = 200 ms, there is an early oscillatory period with relic transients

from the initial perturbation. The axisymmetric perturbation favors the l = 1 sloshing mode.

In this early stage, the shock remains quasi-spherical, but its overall position shifts up and

down relative to the PNS. This sloshing can be seen clearly in the upper left panel of figure

6.2. There is also a symmetry along the z-axis at this stage. On figure 6.3 this symmetry is

shown by curves of the x- and y- components of both the magnetic and kinetic energy that

fall on top of each other.

The SASI-induced flows result in magnetic field amplification around the axial

symmetry. Between 200 to about 420 ms, there is a build up of the magnetic field around
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the z-axis, as can be seen from the structure of the magnetic field on the left upper panel of

6.2. The left panel of 6.3 shows that most of the magnetic energy is concentrated more and

more in the z-component during this period. At 400 ms we find that Emag ≈ Emag,z where

Emag,z = B2
z/2.

As the accretion shock sloshes up and down, the infalling materials hit the shock at an

oblique angle. This introduces lateral velocities to the matter inside the shock. The build up

of this leads to more vigorous non-axisymmetric flows. At t = 420 ms non-axisymmetric

modes takes over and disrupt the magnetic field structure along the z-axis. On the top

right panel of 6.2 a disrupted relic of this structure can be seen. The magnetic energy is

distributed equally among the components at t ≥ 480 ms with Emag,x ≈ Emag,y ≈ Emag,z ≈

Emag/3 (see also left panel of figure 6.3). The magnetic energy continues to grow as SASI

develops non-linearly until about t = 540 ms.

This is followed by a period extending for about 300 ms where the magnetic energy

between the PNS and shock surface shows a declining trend. This decline is caused by

multiple factors: the disruption of the concentration of magnetic energy through the surface

of the PNS, the shrinking of the shock volume Vsh, and a slowed magnetic energy generation

rate while the post-shock flow rearranges. The magnetic energy density, Emag/Vsh, continue

to grow slowly during this phase. The total kinetic energy shows the same declining trend

in this period. The kinetic energy exhibits a growing trend due to the sloshing mode up to

about t = 615 ms, at which time it becomes less organized. At this point the components

of the kinetic energy becomes roughly equal: Ekin,x ≈ Ekin,y ≈ Ekin,z where Ekin,χ = ρv2
χ/2

After this “pausing” phase, a gradual increase of the the magnetic energy generation

can be seen for t > 830 ms. The magnetic energy continues to grow until near the end of

the simulation, where it appears to be leveling off at a value of about 2.5×10−5 B, almost 3

orders of magnitude higher than the initial value. Prior to this increase of magnetic energy,

at around t = 800 ms a clear spiral mode pattern emerges in the fluid flow. Figure 6.4

illustrates this, where we plot polytropic constant (a proxy for the fluid entropy) at two

instances separated by two full revolution about the PNS. The two panels in figure 6.4

correspond to the two lower panels of figure 6.2. The spiral mode of the SASI generates a
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Figure 6.4: Snapshots showing the polytropic constant (κ = p/ρΓ) at selected times during
the spiral mode of SASI. Velocity vectors where |v| ≥ cs =

√
Γp/ρ are over overlaid on

both plots. The two selected times of the plots correspond to the two lower panels of figure
6.2 .

significant amount of angular momentum about the PNS, shown in figure 6.5. At the end of

the simulation, the angular momentum is 3.4×1047 g cm−2 s−1, which is consistent with

what reported by Blondin and Mezzacappa (2007).

Figure 6.4 shows the triple point where an internal shock inside the accretion is

connected to the accretion shock (Blondin and Mezzacappa, 2007). Ahead of the triple

point, a plunging supersonic stream penetrates down toward the PNS, as indicated by the

black velocity vectors. This flow introduces a shear that may be susceptible to the Kevin-

Helmholtz instability and other fluid instabilities associated with velocity shear. This often

results in turbulent flows. The shearing region connected to the triple point generates fluid

vorticity—a local measure of the rate of rotation of the fluid—which has been pointed out

to be helpful for magnetic field generation (Mee and Brandenburg, 2006). In figure 6.6

we plot the fluid vorticity at selected times correspond to the two bottom panels of figure

6.2. A clear similarity can be seen for the distribution of the magnetic field and the fluid

velocity at these times.
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Figure 6.5: Angular momentum of the matter between the shock surface and the PNS for
model 3DB12Am. The total angular momentum |L| =

√
L2

x +L2
y +L2

z is plotted as solid
black line; the individual components Lx, Ly, Lz are plotted as dotted red line, dashed green
line and dash-dot blue line, respectively.
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Figure 6.6: The distribution of fluid vorticity |ω| = |∇× v| at late times of SASI. The
selected times for these panels correspond to the two bottom panels of figure 6.2. Vorticity
is plotted in units of s−1. The white contours are plotted where the magnitude of the
magnetic field is 6×1010 G and 4×1010 G

At the end of the simulation, the magnetic field evolves into an intermittent “flux rope”

structure. The bulk of the magnetic energy is stored in fields with strength around 1012 G,

although there are extended region with magnetic field strength that exceeds 1013 G. Figure

6.7 shows the distribution of the magnetic field magnitude as function of radius. The

magnetic energy, however, is still far below both the internal and kinetic energies of the

post-shock flows. In some regions, the magnetic energy density reaches up to about 10%

of the kinetic energy density, and 10% of the fluid pressure intermittently, but the magnetic

energy does not seem to impact the dynamics of the SASI evolution in any significant way.

6.3.1.2 Model with Random Pressure Perturbation

The previous model 3DB12Am with axisymmetric perturbation quickly developed the l = 1

sloshing mode due the nature of the perturbation. To complement this model and investigate

any dependence of the perturbation method on the magnetic field generation, we have

computed three different models in addition to the model 3DB12Am at the same spatial

resolution. The SASI in these models are initiated with random pressure perturbation.
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Figure 6.7: Scatter plot of the magnetic field magnitude as a function of the radius for
model 3DB12Am. The selected times correspond to the snapshots of figure 6.2. Plus signs
denote the RMS value of the magnetic field in spherical shells bounded by r± = r±25 km,
with r = 100, 200, 200, and 400 km.
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They are one non-rotating model with initial magnetic field B0 = 1012 G (3DB12Rm),

another non-rotating model with weaker initial magnetic field B0 = 1010 G (3DB10Rm),

and a rotating model with initial magnetic field B0 = 1012 G and initial specific angular

momentum l = 1.5×1015 cm2 s−1 about the z-axis (3DB12ΩRm).

Figure 6.8 shows a brief overview of the results of these numerical experiments. In

this figure, we plot the relative change in total magnetic energy between the PNS and the

shock over time (upper left panel), total angular momentum between the PNS and the shock

(upper right panel), kinetic energy of the flow between the PNS and the shock (lower left

panel), and the average shock radius R̄sh. The first quantities are integrated over the volume

bounded by the inner boundary (the cutout) and the accretion shock surface. The average

shock radius is defined as the radius of a sphere whose volume is equal to that encompassed

by the shock. Models 3DB12Am, 3DB12Rm, 3DB12ΩRm, and model 3DB10Rm are represented

by black, red, blue, and green lines, respectively.

Several features common to all models here can be identified. The magnetic energy

shows a period of exponential increase followed by a period of less vigorous growth in

all models. At the end of the simulations, the magnetic energy gets amplified by a factor

of a few thousands. In all models, the spiral mode eventually dominates the SASI. This

is consistent with the results of Blondin and Mezzacappa (2007). The magnetic energy

growth appears to be responsive to the spiral mode of SASI. In all models the angular

momentum reaches similar values on the order of 1047 g cm2 s−1, sufficient to impact the

rotation rate of the PNS. The kinetic energy also reaches the same levels in all models.

A correlation can be seen of the initiation magnetic energy growth (upper left panel)

with the onset of the nonlinear phase of SASI in all models (lower left panel). In both

models 3DB12Rm (red) and model 3DB12ΩRm (blue), the trends of the magnetic energy

growth continue for a while even after the kinetic energy starts to level off around 500 ms

and 800 ms for those models. All the models with random perturbation shows both

the sloshing and spiral mode early in the evolution, while the model with axisymmetric

perturbation does not show the spiral mode until later. The model with initial rotation

enters (3DB12ΩRm) enters the nonlinear state sooner, and the magnetic energy grows
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Figure 6.8: Overview of all SASI 3D models at 300/192 km spatial resolution. The plots
shows shows the relative change in total magnetic energy between the PNS and the shock
over time (upper left panel), total angular momentum between the PNS and the shock
(upper right panel), kinetic energy of the flow between the PNS and the shock (lower
left panel), and the average shock radius R̄sh = (3Vsh/4Π)1/3 (lower right panel). For
all panels, the results are plotted for the model 3DB12Am (black), model 3DB12Rm (red),
model 3DB12ΩRm (blue), and model 3DB10Rm (green). The initial magnetic energy is
2.3×10−12 B for model with B0 = 1010 G and 2.3×10−8 B for model with B0 = 1012 G.
On the upper left panel, reference lines for exponential growth with e-folding times of
71 ms and 60 ms are drawn as thin dashed and dotted blue lines, respectively.
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faster than the other non-rotating models. It also develop more directly into the spiral

mode pattern. During the simulation, the model with initial rotation seems to somewhat

maintain its angular momentum close to the original axis of rotation (to within an angle

of arctan(
√

L2
x +L2

y/Lz . 0.2 rad), while the non-rotating models have their angular

momentum vectors change direction in a seemingly random fashion when they enter the

SASI spiral mode.

From these comparisons, we can draw two initial conclusions. The fact that model

with the weaker field strength (3DB10Rm) develops similarly to the other models seems to

indicate that the magnetic field has little effect on the nonlinear evolution of the SASI.

Secondly, the growth rate of the magnetic fields at the end of the simulations seem to

indicate that the magnetic energy will not attain significantly higher levels on a timescale

that is relevant for core-collapse supernovae.

6.3.2 Mechanisms for Magnetic Field Amplification

In previous subsection we have seen that SASI-induced flows are capable of amplifying

the magnetic field inside the shock. Preliminary observation (see figure 6.8) suggests that

the increase of the magnetic energy is at the expense of the kinetic energy. When the SASI

is in the nonlinear stage, there is a significant kinetic energy of the flow available as the

immediate source of the magnetic energy. In this subsection, we explain the mechanisms

for magnetic field amplification.

Let us consider the evolution of the scalar magnetic energy density to help us pinpoint

the source of the magnetic field amplification. From the magnetic induction equation

(equation 6.4), it can be shown that the magnetic energy density evolves according to

∂emag

∂ t
= B · [(B ·∇)v− (v ·∇)B+v∇ ·B−B∇ ·v−∇× (ηJ)] , (6.6)

where the first, second, and fourth terms on the right hand side are, conventionally,

said to represent magnetic field evolution due to stretching, advection, and compression,

respectively. The third term is the magnetic monopoles term which vanishes analytically
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but is retained here. A dissipative term is also added as the last term in equation 6.6,

containing the scalar resistivity η . The dissipative term should only appear when the non-

ideal electric field −v×B + ηJ is used in the magnetic induction equation, where the

current density is obtained from Ampère’s law, J = ∇×B.

Although we are only concerned with ideal MHD here, the numerical method for

solving the magnetic induction equation contains dissipative terms that manifest as

numerical resistivity in the regions where magnetic field varies significantly over a few

computational grid cells. Physically, magnetic energy dissipation is extremely small in the

supernova environment. However, to achieve such realism is computationally prohibitive

and not feasible in numerical simulations of the type presented here. Therefore it is

important to consider the effect of numerical resistivity in our analysis.

The MHD Poynting theorem can also be used to rewrite equation 6.6 as

∂emag

∂ t
+∇ · [P+ηJ×B] =−v · (J×B)−ηJ ·J, (6.7)

where the Poynting vector is P = (E×B) = [v(B ·B)−B(B ·v)]. This equation shows that

the magnetic energy density increases through work done against the Lorentz force (first

term on the right-hand side), provided that it overcomes any losses due to Joule dissipation,

i.e. resistivity (second term on the right-hand side). The Lorentz work term WL =−v · (J×

B) can be either positive or negative; the dissipative term QJ = ηJ ·J can only decrease the

magnetic energy.

To identify the mechanisms responsible for magnetic energy growth in our simulations,

we compare the individual terms on the right-hand side of equation 6.6 through magnetic

energy growth rates due to stretching, advection, and compression, defined respectively as
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σ∇v =
2〈B · [(B ·∇)v]〉
〈B ·B〉

, (6.8)

σv·∇ = −2〈B · [(v ·∇)B]〉
〈B ·B〉

, (6.9)

σ∇·v = −2〈B · [B∇ ·v]〉
〈B ·B〉

. (6.10)

Angle brackets denote an average over the volume encompassed by the shock. The growth

rate due to magnetic monopoles is defined as

σ∇·B =−2〈B · [v∇ ·B]〉
〈B ·B〉

, (6.11)

which we included in our analysis as a consistency check and show that it remains small

in our simulations. For ideal MHD, the magnetic growth rate σemag = 〈e−1
mag〉〈∂emag/∂ t〉

equals the sum of the rates in equations 6.8 – 6.11. We can also define the rate due to

the work done against the Lorentz force WL in SASI-driven flows. This is effectively a

conversion of kinetic energy into magnetic energy. This rate is given by

σJ×B =−2〈v · (J×B)
〈B ·B〉

. (6.12)

We plot the quantities from equations 6.8 – 6.12 for model 3DB12Am, 3DB12Rm, and

3DB12ΩRm in figures 6.9 – 6.11.

In model 3DB12Am the magnetic energy receives significant contributions from com-

pression up to about t = 430 ms due to to the SASI sloshing mode that tends to converge the

fluid flows at the temporary symmetry axis. For t ≥ 460 ms, the stretching term dominates,

with σJ×B≈σ∇v. Contributions from compression are small in this phase. In all models the

contribution from advection is mostly negative, and near zero at late times. This is expected

since the role of advection is to drag the magnetic field into the PNS (inner boundary) with

the fluid flows. The time-averaged rates for model 3DB12Am over the interval 460 ms to 1.1 s

(the nonlinear stage of SASI) are 〈σ∇v〉 ≈ 435 s−1, 〈σv·∇〉 ≈ −19 s−1, 〈σ∇·v〉 ≈ 112 s−1,
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Figure 6.9: Magnetic energy growth rates for model 3DB12Am. These quantities are plotted:
stretching σ∇v (black curve), advection σv·∇ (green curve), compression σ∇·v (red curve),
and Lorentz work σJ×B (magenta curve). Rate growth due to magnetic monopoles σ∇·B is
also plotted as thin black dotted curve; it remains small throughout the simulation.
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Figure 6.10: Magnetic energy growth rates for model 3DB12Rm. The same quantities are
plotted as in figure 6.9.
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Figure 6.11: Magnetic energy growth rates for model 3DB1ΩRm. The same quantities are
plotted as in figure 6.9.
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and 〈σJ×B〉 ≈ 434 s−1. In all 3D models, the bulk of the magnetic energy is generated

during the nonlinear stage covered by these intervals.

The two other models with random perturbation, model 3DB12Rm and 3DB12ΩRm,

exhibit very similar behavior in the nonlinear regime. The rate at this stage are dominated

by the stretching rate with σ∇v ≈ σJ×B. They however do not show large spikes in the

compression rate at earlier time that was seen for the compression rate of model 3DB12Am.

We postulate that these spikes are the result from the sloshing mode induced by the

axisymmetric perturbation. For comparisons, we also list the computed time-average rates

for the random perturbation models. In the interval from 700 ms to 1.1 s for model 3DB12Rm

we found 〈σ∇v〉 ≈ 435 s−1, 〈σv·∇〉 ≈ −9 s−1, 〈σ∇·v〉 ≈ 97 s−1, and 〈σJ×B〉 ≈ 422 s−1.

For model 3DB12ΩRm the time averaged rates are 〈σ∇v〉 ≈ 434 s−1, 〈σv·∇〉 ≈ −6 s−1,

〈σ∇·v〉 ≈ 97 s−1, and 〈σJ×B〉 ≈ 420 s−1 over the interval from 500 ms to 1 s.

In all of our models, we see that in the nonlinear stage the magnetic energy generation

is a result of the net work done against the Lorentz force by the fluid motion form the SASI-

induced flows. This is essentially a conversion of the kinetic energy to the magnetic energy.

The most dominant mechanism of the magnetic energy growth rate is via the stretching of

the magnetic field, as we find that σJ×B ≈ σ∇v in all models. The SASI spiral mode gives a

persistent shear flow inside the accretion shock, which generates fluid vorticity and triggers

secondary fluid instabilities in a turbulent flow. In a turbulent flow, separation of two fluid

elements grows exponentially with time. If these fluid elements were initially connected by

a weak magnetic field, the growing separation results in the stretching of the field since in

the case of ideal MHD the magnetic field are frozen in the fluid. The stretching decreases

the cross-sectional area and thus, due to flux conservation, strengthens the magnetic field

and increases the magnetic energy (Ott, 1998).

In §6.3.1 we have seen that the magnetic field evolves into a complicated flux rope

structure in the nonlinear stage of the SASI. The total magnetic energy levels off at a level

that is still well below the kinetic energy of the flows beneath the shock. However, here

we see that at the end of the simulations the magnetic energy growth rate σJ×B remains

constant. These therefore suggest that the magnetic energy growth does not stop because
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of the dynamical equipartition of the magnetic field with the fluid on any spatial scale. On

the other hand, the bulk of the magnetic energy is concentrated on spatial scales where

numerical resistivity inevitably plays a role. To investigate this, we proceed with varying

the spatial resolution in our simulations.

6.3.3 Effects of Spatial Resolution Variation

Our analysis from §6.3.2 suggests that the spatial resolution eventually plays a role in

stopping the growth of the magnetic field in SASI. To further investigate this, we present

results where we vary the spatial resolution of our model with initial field B0 = 1012 G and

axisymmetric perturbation. These are models 3DB12Al, 3DB12Am, and 3DB12Ah (see also

table 6.1).

The three models evolve in qualitatively similar manner from the hydrodynamics

point of view. The initial perturbation drives the l = 1 sloshing mode, leading to a

temporary build up of magnetic field along the symmetry axis and its partial dissruption.

In all three models, non-axisymmetric modes appear around t = 400 ms, followed by a

rearrangement of the flow that leads to a prominent spiral mode and a post-shock flow

with significant angular momentum about the PNS. The integrated kinetic energy and total

angular momentum between the PNS and the shock evolve similarly with time in all three

models. At the end of the simulation, they reached values of about Ekin ≈ (3−4)×10−2 B

and |L| ≈ (3−4)×1047 cm2 s−1, respectively. However, the same thing cannot be said for

the magnetic field evolution.

The evolution of the magnetic field of the three models is very sensitive to the spatial

resolution. Figure 6.12 illustrates the sensitivity of the magnetic field to the spatial

resolution. On the two upper panels the distribution of the magnetic field magnitude at

the end of the simulation are shown for models with the lowest (3DB12Al) and highest

(3DB12Ah) resolutions at the end of the simulations. The upper right panel, showing model

3DB12Ah, reveals a highly intermittent magnetic field in larger region that are much stronger

than model 3DB12Al showed on the upper left panel.
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Figure 6.12: Results from SASI model with axisymmetric perturbation where spatial
resolution has been varied. The two upper panels show the magnitude of the magnetic field
at t = 1500 ms for model with ∆l ≈ 2.34 km (3DB12Al, upper left panel) and ∆l ≈ 1.17 km
(3DB12Ah, upper right panel). The orientation of the plots is such that the normal of the
slicing plane is parallel to the total angular momentum of the flow between the PNS and
the shock surface. The two lower panels show results from models with the cell width
∆l = 2.34 km, 1.56 km, and 1.17 km as red, blue, and black lines, respectively. The lower
left panel shows the total magnetic energy between the shock and the PNS. The lower right
panel shows the magnetic curvature radius λc (upper three solid lines) and the magnetic
rms scale λrms (lower three dotted lines).
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The lower left panel of figure 6.12 shows the total magnetic energy integrated over

the volume between the surface of the PNS and shock. The plot shows that the magnetic

energy is initially insensitive to resolution for t ≤ 400 ms, when the axisymmetric phase

dominates. When the flow becomes more turbulent (t > 400 ms, the evolution of the

magnetic energy begin to diverge. At the end of the simulations, the magnetic energy

of the highest resolution is up to 2 orders of magnitude higher than in the lowest resolution

model, with only a factor of 2 difference in spatial resolution. In all models, stretching

dominates the magnetic field amplification mechanism, with σ∇v ≈ σJ×B for t ≥ 500 ms.

The stretching term remains at a nearly constant level at late times in all three models.

It increases somewhat with increasing spatial resolution (about 65% from 3DB12Al to

3DB12Ah).

To help us quantify the structure of the magnetic field, we plot also two useful

characteristic scales in figure 6.12, the magnetic curvature radius,

λc =

√
〈B4〉

〈|(B ·∇)B|2〉
, (6.13)

and the so-called magnetic rms scale,

λrms =

√
〈B2〉
〈|∇B|2〉

. (6.14)

The magnetic curvature radius measure how sharply the magnetic field is bent (Ryu et al.,

2000), while the magnetic rms scale provides a measure of the thickness of magnetic flux

tubes when the magnetic field has evolved into a highly intermittent flux tube structure

(Brandenburg and Subramanian, 2005).

The magnetic curvature radius and the rms scale reach their optimum values during the

axisymmetric sloshing mode, peaking at around t ≈ 420 ms. In this state, they respectively

measure the length and the thickness of the flux tube. At later time (t ≥ 500 ms), when

the non-axisymmetric spiral mode dominates, they settle to a nearly constant level. Both

scales decrease with increasing resolution, with the ratio λrms/∆l nearly unchanged in all
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three models, and the ratio λc/∆l increases slightly with increasing resolution (about 20%

from 3DB12Al to 3DB12Ah).

From these simulations, it is apparent that the magnetic field amplification is sensitive

to the spatial resolution. As spatial resolution increases, smaller scales of the turbulent

flow due to the SASI become available for the magnetic field to develop via the stretching

mechanism that serves to amplify the magnetic field.

In the highest resolution of our simulation, we find that the growth rate due to the

stretching and the Lorentz work remain constant and larger than zero up to the end of

the simulation. The magnetic energy grows at the expense of the kinetic energy in the

flow, and it can be expected to grow until a dynamical equilibrium is established. Our

simulations suggest that this has not been reached. Figure 6.13 illustrates this, where

we plot the distribution of cells where the ratio of magnetic-to-kinetic energy β
−1
kin =

emag/ekin = vA/|v|2 is greater than or equal to 10−3 (red curve), 10−2 (green curve), 10−1

(blue curve), and 1 (magenta curve) for model 3DB12Ah, with the Alvèn speed vA = B/
√

ρ .

We find that at the end of the simulation the bulk of the magnetic energy (97%) is stored

in cells where β
−1
kin ≥ 10−3, with progressive smaller fraction is in cells where β

−1
kin ≥ 10−2

and β
−1
kin ≥ 10−1. Only about 2% of the total magnetic energy is in cells where β

−1
kin ≥ 10−1.

This shows that dynamical equilibrium is not the limiting factor for the growth of magnetic

energy. The bulk of the magnetic energy becomes concentrated on the smallest available

spatial scale (as determined by spatial resolution), and amplification ceases because thinner

flux tubes due to stretching cannot be resolved. Numerical diffusion is therefore, in effect,

limiting the further growth of the magnetic energy. Therefore the growth of magnetic

energy has not converged in the spatial range covered by our simulations.

6.4 Conclusions and Future Work

We have presented three-dimensional simulations of idealized MHD models of a stalled

supernova shock. Our simulations demonstrate that SASI-driven flows are able to

significantly amplify the magnetic field beneath the the shock surface. In our highest

176



Figure 6.13: Distribution of magnetic energy in zones beneath the shock for model
3DB12Ah. Plotted are curves representing subset of zones where the ratio of magnetic-to-
kinetic energy emag/ekin is greater than or equal to 10−3 (red), 10−2 (green), 10−1 (blue),
and 1 (magenta).
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resolution model, this amplification results to almost 4 orders of magnitude increase in

magnetic energy. The dominant mechanism of this amplification is the stretching of the

field that develops into highly intermittent “flux rope” structure in the final stage of the

simulation. The stretching of the magnetic field is facilitated by turbulent flows driven by

the SASI spiral mode. The increase of the magnetic energy occurs at the expense of the

kinetic energy of the flow beneath the shock.

The final magnetic energy and field strength remain sensitive to the spatial resolution

in our numerical simulations. As the magnetic field evolves into the flux rope structure, the

average thickness of the flux rope is limited by the spatial resolution—being resolved by

only a few computational cells—and numerical resistivity eventually limits the growth of

the magnetic field strength. This effect is, of course, non-physical in our simulations since

the fluid between the PNS and the shock is expected to behave as a nearly perfect electrical

conductor. Although we are unable to make exact predictions about the magnetic field

in a presumed saturated state, we can expect that it may eventually become dynamically

significant on relatively small spatial scales where the drag of the fluid on the flux ropes is

balanced by the tension of the flux ropes (Thompson and Duncan, 1993).

In our models the kinetic energy is the energy reservoir for the amplification of the

magnetic energy. The SASI-driven flows increase the magnetic energy from the work

done against the Lorentz force. Therefore given infinite spatial resolution, the magnetic

energy in our models is still limited by the kinetic energy of SASI-driven post-shock flows,

which is a few of times 10−2 B. This leads us to believe that a SASI-generated magnetic

field from non-rotating or slowly rotating progenitor is not sufficient to become important

for global dynamics of core-collapse supernovae. Larger energy reservoir such as relic

angular momentum from progenitor rotation appears to be needed for MHD effects to have

significant role in driving the supernova explosion.

Past studies have concluded that rapid rotation is a necessary ingredient for magnetic

field amplification during collapse and post-bounce. Our models show that SASI-driven

flow alone can amplify the magnetic field in the post-bounce environment, in contrast to

conclusions reached in the past core-collapse supernova simulations that included MHD
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(for example by Leblanc and Wilson (1970) and Symbalisty (1984)). Although this by

itself does not impact the global dynamics of core-collapse supernovae significantly, an

interesting question for further work is whether, combined with moderate rotation of

the progenitor stars, the magnetic field may be sufficiently amplified to impact the pre-

explosion dynamics as rotational energy becomes available to be harnessed. In other words,

SASI may be able to extend the range of progenitors (rotation rates) for which magnetic

fields play a role in their explosion dynamics.

In the simulations we carried out here we excised the PNS from the computational

domain. This allows us to study the important magnetohydrodynamics aspects of the stalled

supernova shock without the penalty of small time steps due to the high density (hence,

high characteristic speed) in the PNS. However, excision of the PNS prevents us from fully

exploring an important result from Blondin and Mezzacappa (2007), who concluded that

the angular momentum accreted through the inner boundary would spin up the PNS to

observed typical pulsar spin rates, by direct observation in simulations. Therefore in future

work we plan to include the PNS in similar simulations.

The inclusion of the PNS requires that gravitational potential to be computed numer-

ically and integrated into the solution of the MHD equations. This will be accomplished

using the solver for Poisson’s equation we have developed and described in chapter 3.

By including the PNS in future simulations, we expect to also address questions related

to magnetic field dynamics. The simulations presented here demonstrated that SASI-

induced flows can result in significant magnetic field amplification. An implication for this

is that the PNS may attain strong magnetic fields due to the settling of magnetized material

onto PNS. By including the PNS into future simulations, we will be able to investigate

the degree of PNS magnetization that we can expect from SASI-induced magnetic field

amplification. Since neutron star magnetic field is an observable, knowledge of its creation

and structure may provide important insight into the dynamics of core-collapse supernovae.

Additionally, the predicted spin up of the PNS due to the spiral mode of the SASI may result

in favorable condition for further magnetic field amplification in the PNS. These questions

will be explored in future simulations that include PNS.
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Chapter 7

Conclusions and Outlook

GenASiS is a next-generation astrophysics simulation system that is currently under

development. Its purpose is to explore and investigate astrophysical phenomena via large-

scale computer simulations, with the primary emphasis on the simulations of core-collapse

supernovae and neutron star mergers. In this manuscript we have provided a detailed

description of the current version of GenASiS with emphasis on those aspects of GenASiS

that the author has had a significant role in developing. We have shown the equations solved

by the code and their numerical implementation. We have also shown some early scientific

results that were accomplished by simulations with GenASiS.

In chapter 2 we have shown the implementation of Newtonian and special relativistic

MHD in GenASiS. Test problems were performed to validate our implementation of

the numerical scheme. We also described the parallel implementation, and showed its

performance and weak scaling. Weak-scalability is critical for practical execution of large

simulations such as the ones described in chapter 5 and 6.

In developing the MHD module for GenASiS, Dr. Eirik Endeve led the work

on the Newtonian implementation, while I was responsible for the special relativistic

version. I was also responsible for implementing and validating the code with the test

problems and their documentation as described in §2.4. To help in guarding the code

against unintended introduction of software bugs and regression of functionality as code
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development proceeds, I also developed an automated regression testing suite, utilizing test

problems and validations that have been done previously.

So far we have only implemented special relativistic MHD, but general relativistic

MHD needs to be included in GenASiS. Several HLL-type central schemes for general

relativistic MHD (with constrained transport for the evolution of magnetic fields) exist

and have been demonstrated to yield accurate results for relativistic test problems (for

examples, Gammie et al. (2003); Del Zanna et al. (2007); Noble et al. (2006); see also

Font (2008) for a review of relativistic MHD schemes). As discussed in §1.2, the code

modularity in GenASiS architecture will allow this new extension to be added without

replacing or invalidating the currently implementated Newtonian and special relativistic

MHD. The addition of general relativistic MHD to GenASiS will be the subject of future

work.

We described an FFT-based parallel solver for Poisson’s equation in chapter 3. I

was primarily responsible for its development. Coupled with the magnetohydrodyanmics

equations, the solution to Poisson’s equation describes a Newtonian self-gravitating fluid.

This solver is general enough that it can be used to solve any Poisson equation with isolated

boundary condition. We demonstrated the weak-scaling of the solver. As with MHD, a

scalable solver is essential for any large-scale simulations with a large number of processes.

We have used this solver in the simulations described in chapter 5. We will use this solver

for any future work involving Newtonian self-gravity. In particular, we will use it for

future SASI simulations that include the proto-neutron star, as described in §6.4. As a

contribution to the community, this solver will be released and made freely available as

a software library (Budiardja et al., 2010). The ease with which we are able to decouple

this module from the rest of GenASiS is also a testament to the modularity of GenASiS

architecture.

So far we have only considered Newtonian gravity in the code (with back-reaction

potential and energy source terms added to include the effects of gravitational wave

emissions, for example as in §5.2, where needed). However, considering the compaction of

neutron stars, GM/Rc2 ≈ 0.1−0.2, we expect that general relativistic effects are important

181



to their evolution. General relativity has also been a standard consideration since the

early days of supernova simulations with spherical symmetry (for example, May and

White (1966); Colgate and White (1966)). Therefore the inclusion of general relativity

in GenASiS is essential. Toward that goal, we are currently implementing the BSSNOK

formulation for numerical relativity (Alcubierre, 2008; Nakamura et al., 1987; Shibata,

1995; Baumgarte, 1998) in GenASiS. Coupled with general relativistic MHD, this will

make GenASiS a fully consistent relativistic numerical code.

Although the AMR feature in GenASiS is still under development, we have shown

its current functionality and described the necessary scheme for a fully-working AMR

in chapter 4. Dr. Christian Cardall and I have spent considerable efforts in developing

the necessary infrastructure for AMR in GenASiS. I have also developed the solver for

Poisson’s equation in mesh with refinements, as described in §4.3. Further work for AMR

is still necessary to make this a mature feature of GenASiS, as explained in §4.4.

In chapter 5, we have shown results of neutron star merger simulations with GenASiS.

We have also developed the necessary tools in GenASiS for the extraction of gravitational

wave signatures for such simulations. This particular project was primarily my work.

Theoretical templates for simulations such as these are necessary for matched filtering

procedure to extract signals from gravitational wave detectors data sets. Beyond these

simulations, future work would include more physical realism by using nuclear equations

of state already implemented in GenASiS. Magnetic fields should also be included in

future simulations, and their amplification as a viable central engine for GRB should be

investigated. Further down the road, more accurate microphysics for the modeling of

neutron star mergers needs to include better approximations, if not the full solutions, to

the neutrino transport problem. This would shed light on the mechanisms of short-hard

GRB.

We investigated the amplification of magnetic fields due to SASI in chapter 6. These

results, which we have subsequently published in Endeve et al. (2010), showed that

GenASiS is already capable of performing large-scale scientific simulations, although the

code is still under development. I contributed to this accomplishment through the building
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of the code, its test problems and verifications, and its input/output module that enables

such simulations. I also contributed to the analysis of the simulation data. Future work,

building on our experience from these simulations, will include the proto-neutron star with

the SASI, as was explained in §6.4.

Core-collapse supernovae are largely neutrino events, since the bulk of gravitational

binding energy is released as neutrino bursts on the energy scale of 1053 ergs. As such,

any supernova simulation code should have a good treatment of the radiation (neutrino)

transport problem. Since neutrinos interact weakly with matter, neutrino detection provides

an excellent opportunity to probe the physics in the collapsed core of a supernova explosion.

This requires a theoretical understanding of the neutrinos evolution during the event such

as their trajectories, spectra, luminosity, and oscillations. The investigation of neutrino-

heating mechanism to revive the stalled shock in the post-bounce evolution also requires

some treatment of the radiation transport problem.

Neutrinos may also play crucial role in the mergers of neutron stars, and presumably

in the generations of gamma-ray bursts. Although in this manuscript we have not

discussed the treatment of radiation transport in GenASiS, from its conception GenASiS

was designed to eventually solve six-dimensional (three space and three momentum space

dimensions) radiation hydrodynamics (Cardall et al., 2006). The current version of

GenASiS does not have the radiation transport integrated into the code yet, although some

work has been done in multidimensional formulation of conservative relativistic radiative

transfer (Cardall and Mezzacappa, 2003; Cardall et al., 2005). Early studies with GenASiS

have used a simplified treatment of the neutrino transport (Endeve et al., 2007). The

inclusion of multidimensional radiation transport in GenASiS presents major challenges

(see Cardall et al. (2006) for a review) and therefore will be a major accomplishment in the

future.

GenASiS has made a promising start as a next-generation astrophysics simulation

system. We have built the foundation for the inclusion of all physics relevant to simulations

of core-collapse supernovae and neutron star mergers. The similarities of the physics

involved in both of these problems, combined with the versatility of our code, invite us to
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investigate both. Although much work remains to be done, we are confident that this new

tool will enable us to advance the state-of-the-art simulations of core-collapse supernovae

and neutron star mergers.
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Tóth, G. (2000). The B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes.

Journal of Computational Physics, 161(2):605–652. 57

van Den Heuvel, E. (2006). Evolution of X-ray binaries: Achievements and advances.

Advances in Space Research, 38(12):2667–2672. 10

van Leer, B. (1977). Towards the ultimate conservative difference scheme III.

Upstream-centered finite-difference schemes for ideal compressible flow. Journal of

Computational Physics, 23(3):263–275. 20

van Paradijs, J., Groot, P. J., Galama, T., Kouveliotou, C., Strom, R. G., Telting, J., Rutten,

R. G. M., Fishman, G. J., Meegan, C. A., Pettini, M., Tanvir, N., Bloom, J., Pedersen, H.,

Nø rdgaard Nielsen, H. U., Linden-Vø rnle, M., Melnick, J., van Der Steene, G., Bremer,

M., Naber, R., Heise, J., in’t Zand, J., Costa, E., Feroci, M., Piro, L., Frontera, F.,

Zavattini, G., Nicastro, L., Palazzi, E., Bennet, K., Hanlon, L., and Parmar, A. (1997).

Transient optical emission from the error box of the γ-ray burst of 28 February 1997.

Nature, 386(6626):686–689. 3

van Paradijs, J., Kouveliotou, C., and Wijers, R. A. M. J. (2000). Gamma-Ray Burst

Afterglows. Annual Review of Astronomy and Astrophysics, 38(1):379–425. 3

218



Voss, R. and Tauris, T. M. (2003). Galactic distribution of merging neutron stars and black

holes - prospects for short gamma-ray burst progenitors and LIGO/VIRGO. Monthly

Notices of the Royal Astronomical Society, 342(4):1169–1184. 10

Wang, L., Howell, D. A., Hoflich, P., and Wheeler, J. C. (2001a). Bipolar Supernova

Explosions. The Astrophysical Journal, 550(2):1030–1035. 8

Wang, L., Howell, D. A., Hoflich, P., and Wheeler, J. C. (2001b). Bipolar Supernova

Explosions. The Astrophysical Journal, 550(2):1030–1035. 149

Weiler, K. W., Panagia, N., Montes, M. J., and Sramek, R. A. (2002). Radio Emission from

Supernovae and Gamma-Ray Bursters. Annual Review of Astronomy and Astrophysics,

40(1):387–438. 3

Wheeler, J. C. and Akiyama, S. (2006). Magnetic Fields in Core Collapse Supernovae:

Possibilities and Gaps, page 156. World Scientific Publishing Company. 9

Willke, B. (2007). GEO600: status and plans. Classical and Quantum Gravity,

24(19):S389–S397. 5

Willke, B., Aufmuth, P., Aulbert, C., Babak, S., Balasubramanian, R., Barr, B. W.,

Berukoff, S., Cagnoli, G., Cantley, C. A., Casey, M. M., Chelkowski, S., Churches,

D., Colacino, C. N., Crooks, D. R. M., Cutler, C., Danzmann, K., Davies, R., Dupuis,

R. J., Elliffe, E., Fallnich, C., Freise, A., Goß ler, S., Grant, A., Grote, H., Grunewald,

S., Harms, J., Heinzel, G., Heng, I. S., Hepstonstall, A., Heurs, M., Hewitson, M., Hild,

S., Hough, J., Ingley, R., Itoh, Y., Jennrich, O., Jones, R., Hutter, S. H., Kawabe, K.,

Killow, C., Kötter, K., Krishnan, B., Leonhardt, V., Lück, H., Machenschalk, B., Malec,

M., Mercer, R. A., Messenger, C., Mohanty, S., Mossavi, K., Mukherjee, S., Nagano, S.,

Newton, G. P., Papa, M. A., Perreur-Lloyd, M., Pitkin, M., Plissi, M. V., Quetschke, V.,

Re, V., Reid, S., Ribichini, L., Robertson, D. I., Robertson, N. A., Rowan, S., Rüdiger,
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